摘要
针对基于模型和直接匹配的城市交通时间预测方法很难有效整合影响预测的多重因素问题,提出一种基于一维卷积神经网络(Conv1d)-长短期记忆单元(LSTM)-残差网络(ResNet)的混合神经网络预测模型CLRTT。模型利用CNN和LSTM网络提取轨迹的空间和时间相关性,将影响交通时间的外部特征转化为低维向量,级联到时间预测组件的输入,通过在损失函数中引入权重系数的方法结合轨迹局部和整体预测结果,通过3层残差全连接网络得到整段路径的预测时间。针对原始轨迹的路网匹配修正能够有效提升模型预测精度,误差平均减小11%;不同时段和不同长度的轨迹预测实验结果表明,与传统的AVG和KNN类算法的模型相比,CLRTT模型预测误差MAPE在不同测度平均降低10%以上;CLRTT模型具有较好的平稳性,MAPE振幅小于15%,对较长轨迹时间预测精度提升明显。