梁耍王世博谢洋葛世荣
中国矿业大学机电工程学院中国矿业大学(北京)机电与信息工程学院
"透明工作面"是实现智能化无人开采的关键,但现阶段的煤层三维地质模型精度较低,无法满足构建高精度煤层地理信息系统的要求。为此,提出了以采煤机历史截割数据和煤层三维地质模型数据根据不同方式划分出2种数据组合,利用长短期记忆(Long-Short Term Memory,LSTM)神经网络挖掘煤层厚度的变化规律并预测煤层厚度分布。基于LSTM神经网络和编码——解码长短期记忆(Encoder-Decoder Long-Short Term Memory,Encoder-Decoder LSTM)神经网络分别建立了煤层厚度预测模型。结果表明:在超参数未优化时,2种模型的煤层厚度预测结果误差均较大;通过优化两种模型的超参数,并以均方根误差(Root Mean Square Error,RMSE)作为煤层厚度预测的评估标准。在第1种数据组合方式下,LSTM模型和Encoder-Decoder LSTM模型的煤厚预测RMSE分别为0.05、0.044 m;在第2种数据组合方式下,2种模型的煤厚预测RMSE分别为0.051、0.049 m。为进一步对比2种模型预测结果,引入绝对误差,求取预测范围内各点的煤厚预测值与真实值的差值。最后得出,2种数据组合方式下,Encoder-Decoder LSTM模型的预测误差在各较小误差范围内的占比始终优于LSTM模型,Encoder-Decoder LSTM预测模型在预测煤层厚度上表现较好,精度较高,其预测的煤层厚度能够修正煤层地质模型。
煤层地质模型动态修正煤层厚度煤矿智能化无人开采深度学习LSTM
0 引言
1 数据获取与处理
1.1 初始煤层厚度数据
1.2 采煤机历史采高数据
1.3 数据预处理
2 煤层厚度预测
2.1 煤层厚度预测的整体框架
2.2 煤层厚度预测的模型结构
2.3 煤层厚度预测的实证过程 3 结论
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会