• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于改进MT-InSAR的日兰高铁巨野煤田段沉降监测
  • Title

    Monitoring and analysis of subsidence along Ri-Lan high-speed railway at Juye coalfield based on the improved MT-InSAR

  • 作者

    祝传广张继贤邓喀中龙四春张立亚吴文豪

  • Author

    ZHU Chuanguang,ZHANG Jixian,DENG Kazhong,LONG Sichun,ZHANG Liya1,WU Wenhao

  • 单位

    湖南科技大学地球科学与空间信息工程学院湖南科技大学测绘遥感信息工程湖南省重点实验室国家测绘产品质量检验测试中心中国矿业大学环境与测绘学院

  • Organization
    School of Earth Sciences and Spatial Information Engineering,Hunan University of Science and Technology;Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying,Mapping and Remote Sensing,Hunan University of Science and Technology;National Quality Inspection and Testing Center for Surveying and Mapping Products;School of Environment Science and Spatial Informatics,China University of Mining and Technology
  • 摘要

    日兰高铁巨野煤田段农田遍布,合成孔径雷达干涉(InSAR)的时间失相干严重,可用于时序InSAR(MT-InSAR)分析的永久散射体(PS)稀少。将SAR数据限制在失相干影响较弱的10月至次年4月初并联合PS和分布式散射体(DS)有望解决该问题。然而,受限于SAR卫星的重访周期,仅采用10月至次年4月初的SAR影像会导致数据量变少。而当SAR数据较少、相干性较低时,难以准确估计协方差矩阵和相干矩阵,使得现有的DS相位估计方法误差较大。为此,提出了一种基于Fisher信息量的DS相位优化估计算法,利用Fisher信息量调节各干涉对的权重,抑制低相干干涉对的影响。通过模拟数据和真实数据验证了算法的可靠性和可行性。另外,构建了联合PS和DS的小基线(SBAS)干涉处理框架,在增加观测方程的同时保证干涉对的相干质量,从而实现形变信息的稳健估计。利用2020年10月至2021年4月间的Sentinel-1 SAR数据获取了日兰高铁巨野煤田段地表沉降,并结合已有的监测资料分析了地表沉降的成因及时空演化信息。研究结果表明:采用上述方法,能够根据10月至次年4月初的少量SAR数据监测高铁沿线沉降情况;日兰高铁巨野煤田段沿线仍在持续沉降,3公里范围内的平均形变速率集中在-3.5 ~ -0.5 cm/yr之间,与2015至2019年的观测结果一致,未出现加剧现象;巨野煤田段存在可能由断层活化、深层地下水流失等因素间接造成的更大范围地表沉降,并且沉降靠近高铁侧,这一点需引起注意。

  • Abstract

    Farmland is distributed along the Ri-Lan high-speed railway,which may lead to a failure of interferometric synthetic aperture radar (InSAR) due to the temporal decorrelation.Besides,there is a lack of persistent scatterer(PS)for multi-temporal InSAR (MT-InSAR) analysis in the rural area with sparse buildings.It is a potential solution to these problems by using only the SAR data acquired from October to early April of next year to improve the coherence of interferogram and by incorporating the PS and distributed scatterer(DS)to increase the number of coherent point.Nevertheless,due to the limitation of imaging capability of spaceborne SAR system,the number of SAR images available over a period of about six months is often too small to accurately estimate the covariance and coherence matrix of DS(especially in the case of low coherent scenarios),which will degrade the performance of traditional methods.Fisher information index is a common measure for the information content that a random variable carries about an unknown parameter,thereby a new methodology based on the Fisher information index is presented to robustly estimate the DS phase.The new methodology is compared with the related traditional methods via simulation analysis and real data experiments with Sentinel-1 data.The results show that the presented methodology performs better.Besides,a SBAS baseline approach incorporating both PS and DS is presented to increase the number of observation equations,improve the coherence of interferograms and robustly estimate the ground deformation.The ground subsidence along Ri-Lan high-speed railway between October 2020 and April 2021 is extracted employing the presented approach by using C-band SAR acquisition constructed from two tracks of Sentinel-1 data over the region.Then,the characteristics and evolution of the ground subsidence is investigated by comparing with the previous data.The results show that the ground subsidence can be extracted based on a small SAR dataset acquired from October to early April in northern China by using the approach presented.The study also shows that the ground displacement rate ranges from -3.5 to -0.5 cm/a and agrees with the previous measurements without significant worsening.Besides,a secondary subsidence,probably caused by the groundwater outflow and fault instability due to mining,appears further away from the main subsidence basin and affects the regular operation of Ri-Lan high-speed railway,which needs to be further investigated.

  • 关键词

    日兰高铁分布式散射体 相干矩阵 相位估计 Fisher信息 沉降监测

  • KeyWords

    Ri-Lan high-speed railway;subsidence monitoring;distributed scatterers;coherence matrix;phase estimation;fisher information

  • 基金项目(Foundation)
    国家自然科学基金资助项目;湖南省自然科学基金资助项目
  • 文章目录

    1 DS相位估计方法

       1.1 CAESAR和EMI算法

       1.2 基于Fisher信息量的EMI算法:FEMI

    2 实验验证

       2.1 模拟数据实验

       2.2 真实数据实验

    3 联合PS和DS的SBAS处理框架

    4 日兰高铁巨野煤田段地表形变

       4.1 实验区域概况及所用数据

       4.2 PSI与SBAS结果比较

       4.3 形变监测结果的可靠性与精度分析

       4.4 高铁沿线地表的形变分析

    5 结论

  • 引用格式
    祝传广,张继贤,邓喀中,等.基于改进MT-InSAR的日兰高铁巨野煤田段沉降监测[J].煤炭学报,2022,47(3):1031-1042.
    ZHU Chuanguang,ZHANG Jixian,DENG Kazhong,et al.Monitoring and analysis of subsidence along Ri-Lan high-speed railway at Juye coalfield based on the improved MT-InSAR[J].Journal of China Coal Society,2022,47(3):1031-1042.
  • 相关专题
  • 图表
    •  
    •  
    • 模拟相干阵

    图(13) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联