• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于CNN与DCGAN的柔性直流配电网故障检测
  • Title

    Fault detection of VSC based DC distribution network based on CNN and DCGAN

  • 作者

    韦延方吴郑磊王鹏王浩杨明曾志辉王晓卫

  • Author

    WEI Yanfang,WU Zhenglei,WANG Peng,WANG Hao,YANG Ming,ZENG Zhihui,WANG Xiaowei

  • 单位

    河南理工大学 电气工程与自动化学院国网河南省电力公司科学研究院西安理工大学 电气工程学院

  • Organization
    School of Electrical Engineering and Automation,Henan Polytechnic University;State Grid Henan Electric Power Company Scientific Research Institute;School of Electrical Engineering,Xi’an University of Technology
  • 摘要

    煤矿直流供电技术凭借其优良的供电性能将大大提高煤矿供电的可靠性和安全性但由于 该技术所采用的电力电子设备耐受故障冲击电流能力差保护需利用数毫秒内的暂态信息识别故 障区域给传统交流电网继电保护带来了新的挑战。 针对直流电网故障检测正确率低鲁棒性弱的 问题提出了一种基于卷积神经网络CNN与深度卷积对抗生成网络DCGAN的柔性直流配电 网故障检测新方法。 首先利用集合经验模态分解方法将暂态电流分解得到若干个本征模态函 数(IMF)分量计算各个 IMF 的相关系数并重构成新的暂态电流信号;通过滑动窗口取值信号组 合将其经过信号-图像转换变为二维图像该图像分为测试集和训练集;接着将训练集利用 DC⁃ GAN 通过轮流训练判别器和生成器经多次训练逼近真实值从生成器中得到增强样本作为训练 集的扩充;并将训练集与 DCGAN 生成的训练集来训练网络进一步利用 CNN 进行故障检测判断最后从样本增强对识别结果的影响以及卷积核大小池化方式和激活函数等方面对网络性能的 影响进行仿真测试验证了所提算法的有效性。 测试结果表明该方法所分析的 种不同工况下都 能有较高的检测精度且平均检测精度为 95.044%对于分辨率为 44 像素×44 像素的图像检测速 度可达 20 帧 / s


  • Abstract

    Coal mine DC power supply technology will greatly improve the reliability and safety of coal mine power supply due to its excellent power supply performance. However, because the power electronic equipment used in this technology has poor ability to withstand fault impulse current,its protection needs to utilize transient information within a few milliseconds identifying the fault area,which brings new challenges to the traditional AC grid relay protec⁃ tion. Aiming at the problems of low accuracy and weak robustness of DC grid fault detection,this paper proposes a new method for flexible DC distribution network fault detection based on the convolutional neural network (CNN) and deep convolutional confrontation generation network (DCGAN). First,the ensemble empirical mode decomposi⁃ tion method is used to decompose the transient current to obtain several intrinsic mode function (IMF) components,the correlation coefficient of each IMF is calculated,and then a new transient current signal is reconstruc⁃ ted. By taking the signal value through the sliding window, then combining it, a two⁃dimensional image is ob⁃ tained through signal⁃image conversion. The image is divided into a test set and a training set. Then,the training set is trained using DCGAN to train the discriminator and generator in turn,and the true value is approximated by multi⁃ ple trainings. The enhanced samples obtained in the generator are used as the expansion of the training set. The train⁃ ing set and the training set generated by DCGAN are used to train the network,and the CNN is further used for fault detection judgment. Finally,the impact of the sample enhancement on the recognition result and the effect of the size of the convolution kernel,the pooling method and the activation function on the network performance verifies the effectiveness of the algorithm proposed in this paper. The test results show that the four different working conditions analyzed in this paper can have high detection accuracy,and the average detection accuracy is 95.044%. For the im⁃ age with a resolution of 44×44,the detection speed can reach 20 frames / s.


  • 引用格式
    韦延方,吴郑磊,王鹏,等. 基于 CNN 与 DCGAN 的柔性直流配电网故障检测[J]. 煤炭学报,2021,46(S2):1201-1208.
  • Citation
    WEI Yanfang,WU Zhenglei,WANG Peng,et al. Fault detection of VSC based DC distribution network based on CNN and DCGAN[J]. Journal of China Coal Society,2021,46(S2):1201-1208.
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联