• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
悬臂式掘进机煤矸智能截割控制系统与方法
  • Title

    Intelligent cutting control system and method of coal and gangue in robotic roadheader

  • 作者

    王鹏江杨阳王东杰吉晓冬沈阳陈慎金李旭吴淼

  • Author

    WANG Pengjiang,YANG Yang,WANG Dongjie,JI Xiaodong,SHEN Yang,CHEN Shenjin,LI Xu,WU Miao

  • 单位

    中国矿业大学(北京) 机电与信息工程学院石家庄煤矿机械有限公司上海航天控制技术研究所中煤科工智能储装技术有限公司煤炭科学研究总院 储装技术研究分院

  • Organization
    School of Mechatronics and Information Engineering, China University of Mining and Technology - Beijing; Shijiazhuang Coal Mine Machinery Co.,Ltd.; Shanghai Institute of Aerospace Control Technology;China Coal Technology & Engineering Intelligent Storage Technology Co., Ltd.;Storage Technology Research Branch, China Coal Research Institute
  • 摘要

    为实现煤矿掘进机机器人化和无人化的目标提高掘进机截割煤矸的效率和智能化程度, 提出了一种悬臂式掘进机煤矸智能截割控制系统与方法。 详细阐述了系统的原理和硬件组成。 悬 臂式掘进机煤矸智能截割控制系统利用实时采集的多种传感器信息为控制变量主要包括截割电 机电流 I油缸压力 以及截割臂振动加速度 acc 实现掘进机在不同截割状态下煤矸的识别驱动 掘进机截割臂智能截割。 系统硬件部分包含传感与检测系统机载主控系统和系统执行机构并构 建了远程监控平台。 系统依据煤炭行业电气标准分别对一般工况和特殊工况的截割控制策略进行 了方法构建。 在一般工况下基于多种传感器信息利用改进粒子群算法优化的 BP 神经网络控制 器实现截割载荷识别提高掘进机对煤矸识别的准确性实现截割臂摆速的自适应截割。 特殊工况 下分别对硬质点识别和预防闷车 种工况进行控制逻辑构建通过 Automation Studio 软件编程实 现对特殊工况的判断和处理。 以 EBZ135 型掘进机为例进行了地面验证性实验。 实验结果表明, 截割臂摆速的自适应调节时间约在 0.8 s 左右且无超调量具有良好的鲁棒性。 硬质点识别控制和 预防闷车控制的实验结果证明了系统对于特殊工况识别精准快速处理过程稳定可靠验证了所 设计的控制方法具有高的可靠性和控制精度


  • Abstract

    In order to realize the goal of robotization and unmanned operation,and to improve the efficiency and intelli⁃ gence degree of cutting coal and gangue with roadheader,a control method and system of intelligent cutting on coal and gangue with roadheader has been put forward. The principle and hardware components of the system are described in detail. The intelligent gangue cutting control system of roadheader uses a variety of sensor information collected in real time as control variables,mainly including cutting motor current I,cylinder pressure and cutting arm vibration acceleration acc ,to achieve the identification of gangue in different cutting states of the roadheader and drive the intelligent cutting of the roadheader’s cutting arm. The hardware part of the system consists of a sensing and detection sys⁃ tem,an on⁃board master control system and a system actuator,and a remote monitoring platform. According to the elec⁃ trical standards of coal industry,the cutting control strategies of general working conditions and special working condi⁃ tions are constructed respectively. Under the general working conditions,the BP neural network controller optimized by the improved particle swarm optimization algorithm based on a variety of sensor information is used to realize cutting load identification,improve the accuracy of coal and gangue identification of roadheader,and realize the adaptive cut⁃ ting arm swing velocity. In the special working conditions,the control logics of hard spot identification and stuffy car prevention are constructed respectively,and the judgment and treatment of special working conditions are realized by Automation Studio software programming. Taking EBZ135 roadheader as an example, the verification experiment is carried out. The experimental results show that the adaptive adjustment time of the swing velocity of the cutting arm is about 0.8 s and there is no overshoot,which has good robustness. The experimental results of hard point identifica⁃ tion control and stuffy car prevention control show that the system is accurate and fast for the special working condi⁃ tions recognition,and the designed control strategy has a high reliability and control precision.


  • 引用格式
    王鹏江,杨阳,王东杰,等. 悬臂式掘进机煤矸智能截割控制系统与方法[J]. 煤炭学报,2021,46(S2):1124-1134.
  • Citation
    WANG Pengjiang,YANG Yang,WANG Dongjie,et al. Intelligent cutting control system and method of coal and gangue in robotic roadheader[J]. Journal of China Coal Society,2021,46(S2):1124-1134.
相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联