• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于组合权-改进灰色关联度理论的矿井突水水源识别
  • Title

    Identification of mine water inrush source based on combinationweight-theory of improved grey relational degree

  • 作者

    朱赛君姜春露毕波谢毫安士凯

  • Author

    ZHU Saijun,JIANG Chunlu,BI Bo,XIE Hao,AN Shikai

  • 单位

    安徽大学资源与环境学院安徽省矿山生态修复工程实验室平安煤炭开采工程技术研究院有限责任公司

  • Organization
    1.School of Resource and Environment Engineering,Anhui University
    2.Anhui Engineering Laboratory of Mine Ecological Restoration
    3.Pingan Mining Engineering Technology Research Institute Co.,Ltd.,
  • 摘要

    基于组合权和改进灰色关联理论,针对潘谢矿区4个含水层中提取的35个学习样本,建立了矿井突水水源识别模型,并利用该模型对7个检验样本进行了水源识别。结果表明:相同含水层的学习样本和检验样本中Na++K+,Ca2+,Mg2+,Cl-,SO2-4和HCO-3等6项化学指标值的含量变化趋势更为接近,符合灰色关联理论。组合权重综合考虑了主客观权重,避免人为因素的干扰,同时考虑了识别指标的实际情况。组合权方法计算的6项识别因子中,Ca2+,Mg2+,HCO-3的权重分别为0.231,0.383,0.203,且3者的权重值相加占总值的81.7%,说明3项指标在矿井突水水源识别中起主要作用。采用建立的组合权-改进灰色关联度模型对7个检验水样进行识别,除1个水样外,其余均与实际结果一致,识别准确率达到86%,表明该模型在矿井水源识别中具有一定的适用性。

  • Abstract

    Based on combination weights and improved grey relational theory, a model for identifying water sources of mine water inrush was established for 35 learning samples extracted from 4 aquifers in Panxie Mining Area, and the model was used to identify water sources for 7 test samples. The results show the content changes of six chemical index values, such as Na++K+, Ca2+, Mg2+, Cl-, SO2-4 and HCO-3 in the learning samples and test samples of the same aquifer are more similar, which conforms to the grey relational theory. The combined weight comprehensively considers the subjective and objective weights, avoids the interference of human factors, and considers the actual situation of the identification indicators. Among the six identification factors calculated by the combined weight method, the weights of Ca2+, Mg2+ and HCO-3 are 0.231, 0.383 and 0.203, respectively, and the combined weight values of the three factors account for 81.7% of the total value, indicating that these three indicators have a great impact on the identification result of mine inrush water source. The established combination weight-improved grey relational degree model was used to identify the test water samples of 7 different aquifers. Except for one water sample, the others were consistent with the actual results, and the recognition accuracy rate reached 86%, indicating that the model has certain accuracy and applicability in mine water source identification.

  • 关键词

    矿井突水突水水源识别组合权法改进层次分析法熵权法改进灰色关联度理论

  • KeyWords

    mine water inrush;identification of water inrush sources; combination weight method; improved analytic hierarchy process; entropy weight method; improved grey relational degree theory

  • 引用格式
    朱赛君,姜春露,毕波,等.基于组合权-改进灰色关联度理论的矿井突水水源识别[J].煤炭科学技术,2022,50(4):165-172.
    ZHU Saijun,JIANG Chunlu,BI Bo,et al.Identification of mine water inrush source based on combination weight-theory of improved grey relational degree[J].Coal Science and Technology,2022,50(4):165-172.
  • 相关文章
  • 相关专题
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联