Behavior characteristics and NOx emission analysis of new flue gas recirculation in fluidized bed
LI Yanmin,YAN Jin,SUN Rongyu,WANG Taiqi,WANG Peng,LU Xiaofeng
作为低氮燃烧的重要技术手段,烟气再循环(FGR)技术在煤粉炉和链条炉中应用广泛,但对于循环流化床(CFB)锅炉,单一的底部通入方式严重限制了机组低负荷稳燃能力。为保证床温的同时降低NOx排放水平,提出一种采用炉膛稀相区FGR与补燃风协同作用下的新型烟气再循环方法,在1台0.2 t/h CFB燃烧器上开展热态试验,分析了运行参数和喷射位置对炉内燃烧特性和NOx排放的影响。结果表明:通入再循环烟气会导致该区域烟温下降40~60 ℃,炉温分布先下降后升高,引起炉膛出口10 ℃左右的温降,顶部通入补燃风能有效提升出口烟温。随烟气再循环率增加,中部通入再循环烟气使得NOx排放逐渐下降,当烟气再循环率达16%时,可在不影响床温的前提下使NOx排放降低32%,而顶部通入再循环烟气会使NOx排放先下降后上升。炉膛顶部送入不同再循环烟气/补燃风时,随补燃风量增加和烟气再循环率降低,NOx质量浓度从249增至304 mg/m3,NOx转化率从17%逐渐增至33%。“中部FGR+顶部补燃风”方式能降低NOx排放38%,同时燃烧效率维持在98.7%以上。最后基于再循环烟气通入位置、过量空气系数和烟气再循环率,提出了烟气再循环背景下的NOx排放预测模型,为CFB锅炉低负荷运行过程中强化低氮燃烧提供依据。
As an important technical means of low-NOx combustion, flue gas recirculation (FGR) technology has been widely adopted in pulverized coal boilers and chain boilers. However, in circulating fluidized bed (CFB) boilers, the stable combustion capacity under low load is seriously limited due to the conventional injection mode. In order to reduce NOx emission under the premise of ensuring bed temperature, a new FGR method based on the synergistic effect of FGR in dilute phase zone and supplementary combustion air was proposed. The thermal experiments were carried out on a 0.2 t/h CFB combustor, and the effects of operating parameters and injection positions on combustion characteristics and NOx emission in the furnace were analyzed in detail. The key results show that the flue gas temperature in this area will decrease by 40-60 ℃, and the furnace temperature profiles will first decrease and then increase, resulting in a temperature drop of about 10 ℃ at the furnace outlet. The supplementary combustion air from the upper part of the furnace can effectively improve the gas temperature at furnace outlet. With the increase of FGR ratio, the middle FGR injection can gradually reduce the NOx emission. When the FGR ratio reaches 16%, the NOx emission can be reduced by 32% and the bed temperature is kept unchanged. With the increase of top FGR ratio, the NOx emission will decrease first and then increase. When different FGR/supplementary combustion air is sent into the top of the furnace, the mass concentration of NOx increases from 249 to 304 mg/m3 and the conversion rate of NOx increases from 17% to 33% gradually with the increase of supplementary combustion air volume and the decrease of FGR ratio. The mode of middle FGR + top supplementary combustion air could reduce the NOx emission by 38% and maintain the combustion efficiency over 98.7%. Eventually, a NOx emission prediction model under FGR mode was proposed based on FGR injection position, excess air coefficient and FGR ratio, which could provide technical basis for better low-NOx combustion during low-load operation of CFB boilers.
fluidized bed;flue gas recirculation;temperature distribution;supplementary air;NOx emissions
0 引言
1 试验
1.1 试验装置
1.2 试验物料
1.3 试验过程与步骤
1.4 工况安排
1.5 不确定度分析
2 结果和分析
2.1 再循环工况下温度分布特性
2.2 再循环工况下NOx脱除特性
2.3 再循环工况下NOx排放预测
3 结论
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会