Strategies and prospect of photosynthesis mechanism intensification of microalgae CO2 fixation
MAO Weiwei,ZHANG Lei,YIN Qingrong,LI Pengcheng,HU Zhan,SONG Chunfeng
随着工业技术的飞速发展和化石能源的大量使用,CO2排放量逐年增加,其引起的全球变暖是全球环境和经济领域最关注的话题之一。CO2捕集利用与封存技术(CCUS)是我国实现碳达峰、碳中和目标的关键技术,对我国减少CO2排放、构建生态文明具有重大意义。微藻具有生长速度快、对极端环境适应性强、生产成本低等优点,其介导的CCUS技术能吸收固定CO2并将其转化为高附加值产品。该过程中微藻种类对确定CO2固定效率和生物质产量起至关重要的作用。目前许多综述性研究都集中在利用微藻进行碳捕集、利用和储存方面,鲜见关于提高微藻碳捕集效率的最新策略相关综述。基于微藻固碳技术的发展现状,系统讨论了微藻的光合作用和固碳机理。回顾了微藻菌株固定CO2最新进展,重点关注用于燃煤烟气的微藻改良和改进。全面总结了提高微藻光合效率的最新趋势和策略。随机诱变、适应性实验室进化和基因工程等几种修饰和改良微藻菌株的策略可用于产生理想的藻种。其中,基因工程不仅可截断集光复合体(LHC)的天线尺寸来提高光合效率,还可提高Rubisco的速度和选择性。通过向微藻培养物中添加纳米材料(NMs)进行干预策略,可增强CO2在溶液中扩散/溶解,显著提高光系统Ⅱ(PSII)中的相对电子传输速率及微藻中活性氧(ROS)水平,从而改善对类胡萝卜素的一般光合作用。最后,明确了该技术面临的挑战和未来发展方向,提出应继续研发能耐受烟气的高效微藻固碳系统。
With the rapid development of industrial technology and the extensive use of fossil energy, the CO2 emissions are increasing year by year, and the global warming it causes is one of the most concerned topics in the global environment and economy. CO2 capture, utilization and storage (CCUS) is a key technology for China to achieve the goal of carbon peaking and carbon neutrality, which is of great significance for China to reduce CO2 emissions and build ecological civilization. Microalgae have the advantages of fast growth rate, strong adaptability to extreme environments, and low production costs. Its mediated CCUS technology is able to absorb and fix CO2 and convert it into high value-added products. In this process, the species of microalgae play a crucial role in determining CO2 fixation efficiency and biomass production. At present, many review studies focus on the use of microalgae for carbon capture, utilization and storage, but there are few reviews on the latest strategies to improve the carbon capture efficiency of microalgae. Based on the development status of microalgae carbon fixation technology, the photosynthesis and carbon fixation mechanism in microalgae were systematically discussed. Then, this work reviewed recent advances in microalgal strains for CO2 fixation, focusing on the improvement and modification of strains used in coal-fired flue gas. A further comprehensive summary of recent trends and strategies to improve photosynthetic efficiency in microalgae was presented. Several strategies to modify and improve microalgal strains, including random mutagenesis, adaptive laboratory evolution, and genetic engineering, can be used to generate the desirable microalgae strain. Among them, genetic engineering can not only truncate the antenna size of the light-harvesting complex (LHC) to improve photosynthetic efficiency, but also improve the velocity and selectivity of Rubisco. Strategies to intervene by adding nanomaterials (NMs) to microalgal cultures can enhance CO2 diffusion/dissolution in solution, significantly increase the relative electron transport rate in photosynthetic system Ⅱ(PSII) as well as reactive oxygen species(ROS) levels in microalgae, thereby improving the general response to carotenoids photosynthesis. Finally, the current challenges and future development directions of this technology were clarified, and a high-efficiency microalgae carbon sequestration system that tolerates flue gas should continue to be developed. Finally, the current challenges and future development direction of this technology were clarified. Efficient microalgae carbon fixation systems should be researched and developd that can tolerate flue gas.
microalgae;global warming;carbon neutrality;photosynthesis;CO2 emission reduction;biomass production
0 引言
1 微藻光合作用固碳
1.1 光合作用
1.2 微藻中无机碳的跨膜形式
1.3 微藻种类的影响
2 微藻光合效率提高策略
2.1 随机诱变
2.2 适应性实验室进化
2.3 基因工程
2.4 纳米材料的干预
3 发展前景
4 结语
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会