• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
CO2矿化燃煤灰渣基加气混凝土配方研究
  • Title

    Study on formulation of aerated concrete by CO2 mineralization using coal ash

  • 作者

    胡达清罗旷张威李贺东王涛陈彪张力方梦祥

  • Author

    HU Daqing;LUO Kuang;ZHANG Wei;LI Hedong;WANG Tao;CHEN Biao;ZHANG Li;FANG Mengxiang

  • 单位

    浙江天地环保科技股份有限公司浙江大学能源清洁利用国家重点实验室浙江理工大学建筑工程学院

  • Organization
    Zhejiang Tiandi Environmental Protection Technology Co.,Ltd.,
    State Key Laboratory of Clean Energy Utilization,Zhejiang University
    School of Civil Engineering and Architecture,Zhejiang Sci-Tech University
  • 摘要

    为实现燃煤固体废弃物和捕集后CO2的资源化利用,以煤基废弃物燃煤灰渣、脱硫石膏为主要原料,以矿渣为补充胶凝材料,研究了固废配比、矿化养护压力、矿化养护温度对加气混凝土抗压强度和CO2固定率的影响。通过XRD、SEM分析了不同矿化养护制度下的晶相结构和微观形貌,通过压汞法研究了不同养护工况对加气混凝土孔隙结构的影响。结果表明,合适的剩余水灰比有助于提高加气混凝土的CO2固定率和早期抗压强度;CO2养护压力由0.05 MPa上升至1.00 MPa时,加气混凝土的固碳率提高24.8%,抗压强度先上升后降低,养护压力在0.1 MPa时达到峰值;CO2养护温度由25 ℃上升至105 ℃时,加气混凝土固碳率和抗压强度先上升后下降,固碳率在45 ℃时达到最大值7.21%,抗压强度在65 ℃时达最大值3.53 MPa;通过XRD和SEM分析可知,主要矿化产物为碳酸钙,并以方解石和球霰石的形态存在,较高养护压力(≥0.2 MPa)易导致产物界面出现细微裂缝,而随养护温度升高,矿化产物与水化产物同时出现;通过MIP分析可知,矿化养护对加气混凝土孔隙的影响可分为两方面,一方面,粒径小的碳酸钙等产物可填充10~50 nm孔隙,另一方面,矿化放热及产物体积膨胀会导致30~60 μm孔隙增加,提高养护温度可优化微观结构,使孔隙分布更加均匀。

  • Abstract

    In order to realize the utilization of coal-fired solid waste and captured carbon dioxide, the effects of ratio of solid waste, mineralized curing pressure and mineralized curing temperature on the compressive strength and carbon fixation rate of aerated concrete were studied, with the coal-based waste, coal ash and desulfurization gypsum as the main raw materials and slag as the supplementary cementitious material. The crystal phase structure and micro morphology under different mineralized curing conditions were analyzed by XRD and SEM, and the effect of different mineralized curing conditions on the pore structure of aerated concrete was studied by MIP. The experimental results show that the appropriate residual water/slag ratio is helpful to improve the CO2 fixation rate and early compressive strength of aerated concrete. When the CO2 curing pressure increases from 0.05 MPa to 1.00 MPa, the carbon fixation rate increases by 24.8%, and the compressive strength increases first and then decreases. When the curing pressure is 0.1 MPa, the maximum compressive strength is reached. With the CO2 curing temperature rising from 25 ℃ to 105 ℃, the carbon fixation rate and compressive strength increases first and then decreases. The carbon fixation rate reaches maximum of 7.21% at 45 ℃, and the compressive strength reaches maximum of 3.53 MPa at 65 ℃. According to analysis of XRD and SEM, the major mineralized products are CaCO3, which mainly exist in the form of calcite and vaterite. Higher curing pressure (≥0.2 MPa) is likely to cause micro-cracks at the product interface. With the increase of curing temperature, the mineralized products and hydrated products appear simultaneously. According to MIP analysis, the influence of mineralized curing on the pores of aerated concrete can be divided into two aspects: on the one hand, CaCO3 and other products with small particle size can fill the pores of 10-50 nm, on the other hand, reaction heat of mineralization and volumetric expansion of products can cause the increase  of 30-60 μm pores. The microstructure can be optimized by increasing the curing temperature, which can make the distribution of pores more uniform.

  • 关键词

    二氧化碳加气混凝土燃煤灰渣矿渣矿化养护

  • KeyWords

    carbon dioxide;aerated concrete;coal ash;slag;mineralized curing

  • 基金项目(Foundation)
    浙江省尖兵研发攻关计划资助项目(2022C03040);2021年中央引导地方科技发展专项资金“浙江省太阳能利用与节能技术重点实验室建设”科技资助项目(2021ZY1023,TD-KJ-21-007);中央高校基本科研业务费专项资金资助项目(2022ZFJH004)
  • 文章目录

    0 引言

    1 试验

       1.1 试验材料

       1.2 试件制备

       1.3 原料配比

       1.4 CO2矿化养护试验

       1.5 性能和理化性质测试方法

    2 结果与分析

       2.1 不同固废掺比对固碳率、强度的影响

       2.2 矿化养护压力对固碳率、强度的影响

       2.3 矿化养护温度对固碳率、强度的影响

       2.4 理化性质表征分析

    3 结论

  • 引用格式
    胡达清,罗旷,张威,等.CO2矿化燃煤灰渣基加气混凝土配方研究[J].洁净煤技术,2023,29(4):148-157.
  • Citation
    HU Daqing,LUO Kuang,ZHANG Wei,et al.Study on formulation of aerated concrete by CO2 mineralization using coal ash[J].Clean Coal Technology,2023,29(4):148-157.
  • 相关文章
  • 相关专题
  • 图表
    加气混凝土制备流程
    加气混凝土制备流程
    CO2矿化反应装置
    CO2矿化反应装置
    燃煤灰渣-矿渣掺比对固碳率的影响
    燃煤灰渣-矿渣掺比对固碳率的影响
    燃煤灰渣-矿渣掺比对1 d和7 d抗压强度的影响
    燃煤灰渣-矿渣掺比对1 d和7 d抗压强度的影响
    CO2养护压力对固碳率的影响
    CO2养护压力对固碳率的影响
    CO2养护压力对抗压强度的影响
    CO2养护压力对抗压强度的影响
    CO2养护温度对固碳率的影响
    CO2养护温度对固碳率的影响
    CO2养护温度对抗压强度的影响
    CO2养护温度对抗压强度的影响
    不同剩余水灰比下矿化养护对物相的影响
    不同剩余水灰比下矿化养护对物相的影响
    矿化养护压力对物相的影响
    矿化养护压力对物相的影响
    矿化养护温度对物相的影响
    矿化养护温度对物相的影响
    矿化养护压力对微观形貌的影响
    矿化养护压力对微观形貌的影响
    矿化养护温度对微观形貌的影响
    矿化养护温度对微观形貌的影响
    矿化养护压力对孔隙分布的影响
    矿化养护压力对孔隙分布的影响
    矿化养护温度对孔隙分布的影响
    矿化养护温度对孔隙分布的影响
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联