• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
综采设备健康状态评估研究综述
  • Title

    Summary of research on health status assessment of fully mechanized mining equipment

  • 作者

    曹现刚段雍赵江滨杨鑫赵福媛樊红卫

  • Author

    CAO Xiangang;DUAN Yong;ZHAO Jiangbin;YANG Xin;ZHAO Fuyuan;FAN Hongwei

  • 单位

    西安科技大学 机械工程学院,陕西 西安 710054陕西省矿山机电装备智能检测与控制重点实验室,陕西 西安 710054

  • Organization
    College of Mechanical Engineering, Xi'an University of Science and Technology
    Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Detection and Control
  • 摘要
    综采设备逐渐趋于大型化、复杂化、智能化,定期维修与事后维修等传统设备管理模式已难以满足煤矿智能化建设对设备运行的高可靠性需求。因此,研究综采设备健康状态评估相关理论及技术对煤矿智能开采技术发展意义重大。给出了综采设备健康状态评估范畴界定及综采设备健康状态评估流程。从综采设备信号获取、特征提取及融合、健康状态等级划分、健康状态评估模型建立4个方面总结了综采设备健康状态评估方法的研究现状和发展动态。分别从综采设备信号获取及传感器优化布置、数据处理及特征提取、健康状态评估模型建立、综采设备状态评估应用等方面分析了综采设备健康状态评估相关技术目前面临的挑战。针对上述研究现状及面临的挑战,从数据采集方案及故障机理研究手段提升、大数据高性能计算平台建设、深度学习评估模型建立、综采设备健康状态动态评估模型研究、综采设备健康状态评估系统开发等方面探讨了综采设备健康状态评估技术的发展趋势,指出在煤矿智能化进程中,需确保综采设备健康状态评估理论研究、算法开发和工程应用三线齐头并进。
  • Abstract
    Fully mechanized mining equipment is gradually becoming larger, more complex and more intelligent. The traditional equipment management methods of regular maintenance and post maintenance are no longer able to meet the high reliability requirements of equipment operation in coal mine intelligent construction. Therefore, studying the relevant theories and technologies of fully mechanized equipment health status assessment has great practical significance for coal mine intelligent mining. This paper proposes the scope definition of fully mechanized mining equipment health status assessment and the fully mechanized mining equipment health status assessment process. This paper summarizes the research status and development trends of comprehensive mining equipment health status assessment methods from four aspects: signal acquisition, feature extraction and fusion, health status level classification, and health status assessment model establishment. The current challenges faced by fully mechanized mining equipment health status assessment related technologies are analyzed from aspects such as signal acquisition and sensor optimization layout, data processing and feature extraction, establishment of health status assessment models, and application of fully mechanized mining equipment status assessment. In response to the current research status and challenges mentioned above, the development trend of fully mechanized mining equipment health status assessment technology is discussed from the aspects of improving data collection schemes and fault mechanism research methods, building high-performance big data computing platforms, establishing deep learning assessment models, researching dynamic evaluation models for fully mechanized mining equipment health status, and developing fully mechanized mining equipment health status assessment systems. It is pointed out that in the process of coal mine intelligence, it is necessary to ensure that the theoretical research, algorithm development, and engineering application of fully mechanized mining equipment health status assessment go hand in hand.
  • 关键词

    智能开采综采设备故障预测与健康管理特征提取健康等级划分健康状态评估

  • KeyWords

    intelligent mining;fully mechanized mining equipment;fault prediction and health management;feature extraction;health level classification;health status assessment

  • 基金项目(Foundation)
    国家自然科学基金项目(51834006, 52275131);中国博士后科学基金项目(2022MD713793)。
  • DOI
  • 引用格式
    曹现刚,段雍,赵江滨,等. 综采设备健康状态评估研究综述[J]. 工矿自动化,2023,49(9):23-35, 97.
  • Citation
    CAO Xiangang, DUAN Yong, ZHAO Jiangbin, et al. Summary of research on health status assessment of fully mechanized mining equipment[J]. Journal of Mine Automation,2023,49(9):23-35, 97.
  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • 综采设备故障诊断与健康状态比较

    图(4) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联