• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于IGWO-BPNN的露天矿卡车故障预测方法
  • Title

    An IGWO-BPNN-based method for open-pit mine truck failure prediction

  • 作者

    张津鹏李林刘光伟郭直清郭伟强

  • Author

    ZHANG Jinpeng;LI Lin;LIU Guangwei;GUO Zhiqing;GUO Weiqian

  • 单位

    国能宝日希勒能源有限公司辽宁工程技术大学矿业学院

  • Organization
    CHN Energy Baori Hiller Energy Co. , Ltd.
    School of Mining, Liaoning Technical University
  • 摘要
    为有效解决露天矿中卡车的故障预测问题,提出了一种基于改进灰狼算法的BP神经网络模型,并成功应用于预测露天矿卡车故障次数和故障持续时间。首先,针对传统灰狼算法的不足,引入了新的非线性更新机制和基于线性插值的种群更新机制,提出了融合多策略的改进灰狼优化算法。其次,将IGWO应用于BP神经网络的权值和阈值搜索中,形成了基于IGWO的BP神经网络模型(IGWO-BPNN)。最后,以宝日希勒露天煤矿卡车故障数据为例,成功将该模型应用于卡车故障预测研究。结果表明,在相同实验条件下,与其他算法相比,IGWO-BPNN具有更高的模型预测性能和分类精度,可帮助露天矿山科学制定卡车预防性检修计划,并为智慧露天矿山建设提供科学有效的基础决策数据。
  • Abstract
    To effectively address the truck failure prediction problem in open-pit mines, we proposed an improved grey wolf algorithm-based BP neural network model, which was successfully applied to predict the frequency and duration of truck failures in open-pit mines. Firstly, considering the limitations of the traditional grey wolf algorithm, new nonlinear updating mechanisms and population updating mechanisms based on linear interpolation were introduced, leading to the development of a multi-strategy integrated improved gray wolf optimizer (IGWO). Secondly, IGWO was applied to search for the weights and thresholds of the BP neural network, forming the IGWO-based BP neural network model (IGWO-BPNN). Finally, using the failure data of trucks from the Baorixile open-pit mine, the IGWO-BPNN model was successfully employed in truck failure prediction research. Results demonstrate that under the same experimental conditions, compared to other algorithms, IGWO-BPNN exhibited superior predictive performance and classification accuracy, effectively aiding open-pit mining enterprises in developing scientifically sound truck preventive maintenance plans and providing scientifically valid foundational decision -making data for the construction of intelligent open-pit mining.
  • 关键词

    露天煤矿卡车维修故障预测灰狼优化算法BP神经网络

  • KeyWords

    open-pit coal mine; truck maintenance; failure prediction; gray wolf optimizer; BP neural network

  • 基金项目(Foundation)
    国家自然科学基金项目(51974144)
  • DOI
  • 引用格式
    张津鹏, 李 林, 刘光伟, 等. 基于 IGWO-BPNN 的露天矿卡车故障预测方法 [J].煤炭工程, 2023, 55(12): 114-120.
  • 相关文章
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联