-
Title
Crack identification technology of borehole in underground coal mine
-
作者
赵安新黎梁刘柯张育刚王伟峰
-
Author
ZHAO Anxin;LI Liang;LIU Ke;ZHANG Yugang;WANG Weifeng
-
单位
西安科技大学通信与信息工程学院山东能源集团新材料有限公司西安科技大学安全科学与工程学院
-
Organization
College of Communication and Information Engineering, Xi’an University of Science and Technology
Shandong Energy Group New Material Co., Ltd.
College of Safety Science and Engineering, Xi’an University of Science and Technology
-
摘要
为研究采区煤岩体中裂隙、断裂、破碎带等结构面的自动检测技术,解决现有人工智能技术中迭代次数大、检测框准确度低等问题,采用YOLOv5算法融合注意力机制、损失函数、多尺度检测的方法,对煤矿巷道上顶板5种不同地质钻孔进行裂隙检测试验。结果表明:将注意力机制SENet引入YOLOv5模型框架,避免了图像背景区域与裂隙区域相似度较高问题;采用有效交并比损失函数代替完全交并比损失函数,使得预测框能够更加有效拟合真实目标框;对YOLOv5模型增添3种不同尺寸的锚定框并添加160×160特征层,实现检测更小的目标。该方法与SSD、YOLOv5等检测算法在同样条件下相比,其检测精度分别提升了18.9%,2.1%,召回率提升了39.5%,1.6%,平均精度提升了28.1%,1.0%。改进后的模型将三尺度检测变为四尺度检测,提升了算法的多尺度目标检测性能,能够对钻孔裂隙进行高精度检测,满足钻孔裂隙实时检测需求。
-
Abstract
In order to study the automatic detection technology of such structural planes as crack, fracture and fracture zone in coal rock mass in mining area, and solve the problems of large iteration timesand low accuracy of detection frame in existing artificial intelligence technology, the YOLOv5 algorithmcombining attention mechanism, loss function and multi-scale detection methods was used to conductcrack detection tests on 5 different geological boreholes in the roof of coal mine roadway. The resultsshow that the attention mechanism SENet is introduced into the YOLOv5 model framework to avoid theproblem of high similarity between the background region and the crack region, the effective crossoverloss function is used to replace the complete crossover loss function, which makes the prediction framefit the real target frame more effectively, and three different sizes of anchor frames are added to theYOLOv5 model and 160 × 160 feature layers are added to achieve smaller detection targets. Comparedwith detection algorithms such as SSD and YOLOv5 under the same conditions, the detection accuracyof this method is increased by 18. 9% and 2. 1% , the recall rate is increased by 39. 5% and 1. 6% ,and the average accuracy is increased by 28. 1% and 1. 0% , respectively. The improved model changesthe three-scale detection into four-scale detection, improves the multi-scale target detection performanceof the algorithm, and can detect borehole cracks with high precision, meeting the real-time detection requirements of borehole cracks.
-
关键词
煤矿钻孔裂隙识别YOLOv5注意力机制深度学习特征提取
-
KeyWords
coal mine borehole; fracture recognition; YOLOv5; attention mechanism; deep learning; feature extraction
-
基金项目(Foundation)
国家自然科学基金项目(52074213);陕西省重点研发计划项目(2022GY-152)
-
DOI
-
引用格式
赵安新,黎梁,刘柯,等.煤矿井下钻孔裂隙识别技术[J].西安科技大学学报,2023,43(6):1158-1167.
-
Citation
ZHAO Anxin,LI Liang,LIU Ke,et al.Crack identification technology of borehole in underground coal mine[J].Journal of Xi’an U-niversity of Science and Technology,2023,43(6):1158-1167.
-
相关文章