• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于CNN-Transformer融合模型的选煤厂振动筛上杂物语义分割研究
  • Title

    Semantic segmentation of tramp materials on vibrating screens in coal preparation plants using a CNN-Transformer hybrid model

  • 作者

    陈凡宋文革范誉瀚陈塞

  • Author

    CHEN Fan;SONG Wenge;FAN Yuhan;CHEN Sai

  • 单位

    国能神东煤炭集团有限责任公司中国矿业大学(北京)人工智能学院中国矿业大学(北京)化学与环境工程学院

  • Organization
    CHN Energy Shendong Coal Group Co. , Ltd.
    School of Artificial Intelligence, China University of Mining and Technology-Beijing
    School of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing
  • 摘要

    为了智能、高效分离选煤厂原煤中的杂物,促进选煤工艺智能化发展,提出了一种结合卷积神经网络(CNN)和Transformer的语义分割模型,专门针对振动筛上复杂环境中的杂物进行像素级分割。首先,将Transformer结构应用到选煤厂振动筛的杂物分割任务上,实验结果表明其能更准确地识别杂物边缘。其次,详尽对比分析了不同的上采样方法和Transformer模块,增强了模型的可解释性和适用性。最后,通过与其他先进模型(如ResNet和Swin-Transformer)的综合比较,证实了提出模型在处理振动筛上杂物分割问题上的优越性能。

  • Abstract

    In order to intelligently and efficiently separate impurities from raw coal in coal preparation plants, and promote the intelligent development of coal preparation processes, we propose a semantic segmentation model that combines Convolutional Neural Networks (CNN) and Transformers, specifically designed for pixel-level segmentation of tramp materials in complex environments on vibrating screens. Firstly, we pioneer the application of the Transformer structure for tramp material segmentation tasks on vibrating screens in coal preparation plants. Experimental results demonstrate its superior ability in accurately delineating the edges of tramp materials. Secondly, we provide a comprehensive comparison and analysis of various upsampling methods and Transformer modules, thereby enhancing the interpretability and applicability of the model. Finally, through an exhaustive comparison with other state-of-the-art models such as ResNet and Swin-Transformer, we validate the efficacy of the proposed model in handling the segmentation of tramp materials on vibrating screens.

  • 关键词

    智能选煤筛上杂物检测语义分割计算机视觉

  • KeyWords

    intelligent coal preparation; detection of impurity on screen; semantic segmentation; computer vision

  • DOI
  • 引用格式
    陈 凡, 宋文革, 范誉瀚, 等. 基于 CNN-Transformer 融合模型的选煤厂振动筛上杂物语义分割研究 [J]. 煤炭工程, 2023, 55(S1): 193-199.
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联