• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
机器学习方法在矿井水防治理论体系研究中的应用思考
  • Title

    Some reflections on the application of machine learning to research into the theoretical system of mine water prevention and control

  • 作者

    姚辉尹慧超梁满玉尹尚先侯恩科连会青夏向学张金福吴传实

  • Author

    YAO Hui;YIN Huichao;LIANG Manyu;YIN Shangxian;HOU Enke;LIAN Huiqing;XIA Xiangxue;ZHANG Jinfu;WU Chuanshi

  • 单位

    西安科技大学 地质与环境学院华北科技学院 河北省矿井灾害防治重点实验室防灾科技学院 信息工程学院山西朔州平鲁区国强煤业有限公司

  • Organization
    College of Geology and Environment, Xi’an University of Science and Technology
    Hebei State Key Laboratory of Mine Disaster Prevention, North China Institute of Science and Technology
    School of Information Engineering, Institute of Disater Prevention
    Shanxi Shuozhou Pinglu District Guoqiang Coal Industry Co., Ltd.
  • 摘要

    致灾机理、危险性评价、灾变预测共同构成矿井水防治理论体系基本内容,其在过去20多年里快速发展,目标是理解矿井水行为特征,预测演化趋势,服务矿区水害防治工作。机器学习是大数据时代进行数据分析和挖掘的有力工具。将机器学习应用于矿井水防治理论体系研究,已得到相对广泛的关注。针对理论体系的3项基本内容,重点讨论了机器学习在各内容建设中的具体应用,主要包括:根据不同水害类型分类简述致灾机理研究现状,指出机器学习应用暂为空白的原因为其不具备做出假设的能力。认为未来致灾机理研究方法依然以传统方法(理论分析、数值模拟、相似模拟等)为主,机器学习促进地质数据获取与处理,对机理研究作出贡献;分析方法优势,指出机器学习作用于危险性评价的主要方式为非结构化数据的处理及丰富评价方法;分析基于物理和基于数据的单一预测模式弊端,论述物理模型与数据驱动相结合的必要性,相应给出“模型−数据”双驱动预测模式的3种实现形式,并讨论了基于图像的灾变预测方法可行性。随着生产数据及地质数据的丰富,机器学习方法可推动理论体系研究快速发展,并为矿井水防治学科系统方法论研究作出贡献。

  • Abstract

    The theoretical system of mine water prevention and control encompasses three fundamental aspects: disaster-causing mechanisms, risk evaluation, and disaster prediction. This theoretical system, having undergone rapid development over the past 20 years, aims to gain insights into the behavior characteristics of mine water and predict its evolutionary trend, thus serving the prevention and control of water disasters in mining areas. Applying machine learning, a powerful tool for data analysis and mining in the era of big data, to research into the theoretical system has garnered considerable attention. This study focuses on the specific applications of machine learning to the three fundamental aspects of the theoretical system. Specifically, this study offered a brief introduction to the current status of research on disaster-causing mechanisms based on the classification of varying water disasters, proposing that the application gap of machine learning to the mechanism research is due to its incapacity to make assumptions. This study posited that future research on disaster-causing mechanisms will still primarily rely on conventional methods like theoretical analysis, numerical simulation, and similarity simulation, with machine learning facilitating the acquisition and processing of geologic data. The analysis of method advantages reveals that the application of machine learning to the risk evaluation primarily via processing unstructured data and enriching evaluation methods. For disaster prediction, this study analyzed the drawbacks of prediction modes based merely on physics or data and expounded on the necessity of combining physical models with data-driven approaches. Accordingly, this study presented three methods for achieving the model-data dual-driven prediction mode. Additionally, this study explored the feasibility of image-based disaster prediction methods. With the increasing abundance of production and geologic data, machine learning will accelerate the development of the theoretical system, contributing to research on the systematic methodology for mine water prevention and control.

  • 关键词

    机器学习矿井突水矿井水防治理论体系大数据

  • KeyWords

    machine learning;mine water inrush;mine water prevention and control;theoretical system;big data

  • 基金项目(Foundation)
    国家自然科学基金项目(51974126);河北省自然科学基金重点项目(D2017508099)
  • DOI
  • 引用格式
    姚辉,尹慧超,梁满玉,等. 机器学习方法在矿井水防治理论体系研究中的应用思考[J]. 煤田地质与勘探,2024,52(5):107−117. DOI: 10.12363/issn.1001-1986.23.10.0641
  • Citation
    YAO Hui,YIN Huichao,LIANG Manyu,et al. Some reflections on the application of machine learning to research into the theoretical system of mine water prevention and control[J]. Coal Geology & Exploration,2024,52(5):107−117. DOI: 10.12363/issn.1001-1986.23.10.0641
  • 相关专题
  • 图表
    •  
    •  
    • 人工智能、机器学习与深度学习的关系

    图(3) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联