• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
营盘壕煤矿深部多煤层开采地表移动变形规律及最优错距研究
  • Title

    Strata movement law and stress distribution characteristics of deep multi-coal seam mining in Yingpanhao Coal Mine

  • 作者

    张国建付连龙郭广礼卫伟高鑫李怀展郭庆彪杨向升

  • Author

    ZHANG Guojian;FU Lianlong;GUO Guangli;WEI Wei;GAO Xin;LI Huaizhan;GUO Qingbiao;YANG Xiangsheng

  • 单位

    山东能源集团技术研究总院山东建筑大学 测绘地理信息学院中国矿业大学 环境与测绘学院安徽理工大学 空间信息与测绘工程学院通用技术集团工程设计有限公司

  • Organization
    Technology Research Institute in Shandong Energy Group Co., Ltd
    School of Surveying and Geo-Informatics, Shandong Jianzhu University
    School of Environment and Spatial Informatics, China University of Mining and Technology
    School of Geomatics, Anhui University of Science and Technology
    General Technology Group Engineering Design Co., Ltd.
  • 摘要

    鄂尔多斯东胜煤田为侏罗系含煤地层,诸多深部矿区2-2煤层和3-1煤层全区可采,并且煤层间距较小。以营盘壕煤矿为地质原型,通过FLAC3D和UDEC数值模拟软件构建研究区域数值模型,围绕2-2煤层和3-1煤层开采引起的地表移动变形及应力场演化规律进行研究。结果表明:多煤层重复采动将引起沉陷盆地中心投影向下煤层采空区方向移动,进而逼近煤层初采中心投影,并最终越过之;两煤层连续开采后,地表最大下沉值小于两煤层单独开采最大下沉值之和,煤层复采下沉系数小于初采下沉系数;煤柱错距与地表移动参数关联密切,错距系数与地表下沉系数、水平移动系数和主要影响角正切分别呈对数正态函数、凹抛物线和凸抛物线函数关系,并且与宽深比作为共同因子对煤层初采及复采表征参数的比值产生耦合影响;另外,同时随着错距的增大,地表沉陷盆地范围先减小后增大的趋势发展,水平移动近盆地等值线由椭圆形向梭子形演化;综合卸压错距经验公式、地表损伤程度及煤柱卸压效果确定的研究区域多煤层开采最优错距为30 m。

  • Abstract

    The Dongsheng Coalfield in Ordos is a Jurassic coal bearing formation, and the 2-2 and 3-1 coal seams in many deep mining areas can be mined in the whole area, and the spacing of coal seams is small. This paper takes Yingpanhao Coal Mine as a geological prototype, and constructs a numerical model of the research area through FLAC3D and UDEC numerical simulation software to study the surface movement deformation and the evolution law of stress field caused by mining coal seams 2-2 and 3-1. The results show that repeated mining in multiple coal seams will cause the central projection of the subsidence basin to move toward the direction of lower coal seam, and then approach the central projection of the initial mining of the upper coal seam, and ultimately cross it; after the two coal seams were continuously mined, the maximum subsidence value of the surface is less than the sum of the maximum subsidence values caused by mining the two coal seams separately, and the subsidence coefficient of the coal seam repeated mining is less than the initial mining subsidence coefficient; coal pillar dislocation is closely related to surface movement parameters, the staggered coefficient is related to the surface subsidence coefficient, horizontal movement coefficient, and the tangent of the main influencing angle in a logarithmic normal function, concave parabolic function, and convex parabolic function, respectively; as common factors, pillar staggered distance and width-depth ratio have coupling effects on the ratio of characteristic parameters of primary mining and repeated mining in coal seam; in addition, with the increase of pillar staggered distance, the surface subsidence basin area decreases first and then increases, and the contours of horizontal movement near the basin evolve from ellipse to shuttle; the optimal staggered distance of multi-coal seam mining in this study area is 30 m based on the empirical formula of pressure relief distance, the surface damage degree and the relief effect of staggered mining.

  • 关键词

    开采沉陷地表变形巨厚弱胶结覆岩深部开采错距开采地表移动煤柱卸压

  • KeyWords

    mining subsidence;surface deformation;super thick and weak cementation overburden;deep mining;staggered distance mining;surface movement;rock movement; coal pillar stress unloading

  • 基金项目(Foundation)
    国家自然科学基金青年科学基金资助项目(52204097);国家自然科学基金面上资助项目(42374049)
  • DOI
  • 引用格式
    张国建,付连龙,郭广礼,等. 营盘壕煤矿深部多煤层开采地表移动变形规律及最优错距研究[J]. 煤矿安全,2024,55(5):35−50.
  • Citation
    ZHANG Guojian, FU Lianlong, GUO Guangli, et al. Strata movement law and stress distribution characteristics of deep multi-coal seam mining in Yingpanhao Coal Mine[J]. Safety in Coal Mines, 2024, 55(5): 35−50.
  • 相关文章
  • 相关专题
  • 图表

    Table1

    岩层物理力学参数
    岩层 厚度/
    m
    摩擦
    角/(°)
    黏聚力/
    MPa
    抗拉强
    度/MPa
    体积模
    量/GPa
    剪切模
    量/GPa
    底板 32 27 7.95 5.150 6.700 5.300
    煤层3-1 6 7 6.59 2.660 2.030 0.935
    砂质泥岩1 35 27 7.95 4.150 5.700 4.300
    煤层2-2 6 6 8.89 1.350 1.350 0.587
    砂质泥岩2 33 26 5.58 3.760 5.240 3.270
    中粒砂岩1 10 23 1.58 3.920 4.580 3.150
    砂质泥岩3 23 31 4.35 3.440 4.430 3.300
    弱胶结砂岩1 120 27 6.99 3.260 5.280 3.170
    弱胶结砂岩2 50 28 7.39 3.390 5.720 3.360
    弱胶结砂岩3 40 26 5.23 3.030 5.500 3.230
    砂质泥岩4 22 27 5.78 3.350 6.160 3.130
    粗砂岩 14 28 5.68 3.390 8.480 2.830
    弱胶结砂岩4 300 27 2.28 1.420 2.340 1.040
    砂质泥岩5 27 23 0.80 0.823 1.340 0.604
    表土层 86 20 0.65 0.555 0.692 0.312

    Table2

    多煤层开采地表移动变形表征参数
    煤层序号 宽深比 Wmax/mm q Umax/mm b SW/m tanθ 边界角/(°)
    复采3-1错距0 m 0.39 128 0.03 70 0.54 510 1.50 56
    0.83 294 0.05 143 0.49 510 1.50 56
    1.30 972 0.16 441 0.45 510 1.50 56
    1.73 1849 0.31 773 0.42 510 1.50 56
    2.17 2779 0.46 1080 0.39 480 1.60 58
    2.60 3481 0.58 1227 0.35 480 1.60 58
    3.04 3782 0.63 1248 0.33 480 1.60 58
    3.47 3937 0.66 1249 0.32 480 1.60 58
    复采3-1错距30 m 0.39 671 0.11 324 0.48 540 1.42 55
    0.82 1327 0.22 602 0.45 510 1.50 56
    1.25 2340 0.39 950 0.41 510 1.50 56
    1.68 2650 0.44 986 0.37 510 1.50 56
    2.11 2859 0.48 970 0.34 510 1.50 56
    2.55 3009 0.50 1129 0.38 510 1.50 56
    3.00 3229 0.54 1469 0.45 500 1.53 57
    3.41 3288 0.55 1506 0.46 500 1.53 57
    复采3-1错距60 m 0.39 1066 0.18 515 0.48 560 1.37 54
    0.82 1848 0.30 853 0.46 550 1.39 54
    1.25 2870 0.48 1161 0.40 550 1.39 54
    1.68 3464 0.58 1315 0.38 550 1.39 54
    2.11 3678 0.61 1286 0.35 540 1.42 55
    2.55 3806 0.63 1421 0.37 530 1.45 55
    3.00 3965 0.66 1758 0.44 530 1.45 55
    3.41 4057 0.68 1830 0.45 530 1.45 55
    复采3-1错距90 m 0.39 1218 0.20 591 0.49 595 1.29 52
    0.82 2350 0.39 1067 0.45 580 1.32 53
    1.25 3193 0.53 1291 0.40 580 1.32 53
    1.68 3715 0.62 1394 0.38 570 1.34 53
    2.11 3928 0.65 1355 0.34 570 1.34 53
    2.55 4027 0.67 1515 0.38 560 1.37 54
    3.00 4216 0.70 1789 0.42 550 1.39 54
    3.41 4376 0.73 1883 0.43 570 1.34 53
      注:Wmax为地表最大下沉值;q为地表下沉系数;Umax为地表水平移动值;b为水平移动系数;SW为下沉边界到采空区边界的距离;tanθ为主要影响角正切。

    Table3

    煤柱错距与地表移动参数统计表
    煤层错
    距/ m
    Wmax/
    mm
    qUmax/
    mm
    bSW/
    m−1
    主要影响
    角正切值
    边界角/
    (°)
    091320.7632380.354801.6058
    3082090.6831250.385401.4255
    6089460.7533780.385401.4255
    9092460.7734470.375701.3453

    Table4

    多煤层错距开采煤柱受力状态
    煤柱错距/m煤柱1煤柱2煤柱3煤柱1煤柱2煤柱3
    0
    20
    30
    60
    90

    Table5

    不同错距开采煤柱最大应力分布
    煤层 最大应力分布位置
    错距0 m 错距20 m 错距30 m 错距60 m 错距90 m
    上煤层 煤柱2 煤柱1 煤柱2 煤柱1 煤柱2
    下煤层 煤柱1 煤柱2 煤柱1 煤柱1 煤柱1
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联