• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
废弃生物质催化热解制富氢燃气:催化剂性能的影响
  • Title

    Catalytic pyrolysis of waste biomass to produce hydrogen-rich gas:Influence of catalyst performance

  • 作者

    李学琴刘鹏卢岩王志伟吴幼青雷廷宙

  • Author

    LI Xueqin;LIU Peng;LU Yan;WANG Zhiwei;WU Youqing;LEI Tingzhou

  • 单位

    华东理工大学 资源与环境工程学院常州大学 城乡矿山研究院 常州市生物质绿色安全高值利用技术重点实验室河南工业大学 环境工程学院河南工业大学 碳中和研究院

  • Organization
    School of Resources and Environmental Engineering, East China University of Science and Technology
    Changzhou Key Laboratory of Biomass Green- Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University
    School of Environmental Engineering, Henan University of Technology
    Institute for Carbon Neutrality, Henan University of Technology
  • 摘要
    本研究通过超声波辅助过量浸渍法将活性组分镍、助剂铁与HZSM-5分子筛结合来提高富氢燃气的产率;进一步以废弃铝灰(ASA)与HZSM-5分子筛作为共载体制备铝灰与HZSM-5分子筛符合共载镍-铁催化剂,并将其用于强化生物质催化热解产富氢燃气的过程。结果表明,在热解温度700 ℃下,Ni-Fe/HZSM-5可使富氢燃气的产率提高到56.49%(约为230.59 mL/g),氢气产率提高到63.12%,产氢效率提高到0.71%,CO得率增加到65.77 mL/g;足够的Ni-Fe/HZSM-5催化剂量强化了生物质热解的产氢路径,促进了积炭气化反应,起到提高H2和CO产率的双重作用。不同种类生物质的组成差异导致催化热解的产物分布不同,Ni-Fe/HZSM-5催化生物质热解气体产率的顺序为PR(74.21%)>WSt(54.71%)>CR(53.5%)>MCh(52.47%)>WSh(52.10%)>CS(46.49%)。HZSM-5和ASA载体间的协同作用强化了CH4与CO2的重整过程,抑制了逆水气变换反应,获得了53.37%和41.56%的气体和焦油产率;并加速了积炭气化反应从而减少了积炭量(0.05 g/g),获得了5.07%的半焦产率;Ni-Fe/ASA@HZSM-5具有较好的热裂化能力和脱氧能力,有助于促进HZSM-5催化剂上富氢燃气的生成;为开发高温热解气深度净化与高效利用技术提供理论支撑,有效指导多级催化重整的新型双催化床层的开发。
  • Abstract
    Catalytic pyrolysis of waste biomass is a promising method for the production of hydrogen-rich gas. HZSM-5 carrier is the premise of ensuring the thermal stability and long life of catalytic materials, and plays a mechanical role in bearing the active component nickel (Ni). At the same time, aluminum ash (ASA), as an important waste in the production process of aluminum industry, is mainly composed of Al2O3 and a large number of heavy metal oxides such as Na2O, CaO, MgO, Fe2O3 and so on. In this study, aiming at the technical bottleneck problems such as the low performance of traditional HZSM-5 molecular sieve and the difficulty of resource utilization of aluminum ash, the active component nickel (Ni) and promoter iron (Fe) were combined with HZSM-5 molecular sieve by ultrasonic-assisted excessive impregnation to improve the yield of hydrogen-rich gas. Furthermore, waste aluminum ash (ASA) and HZSM-5 molecular sieve were used as co-carriers to prepare aluminum ash co-supported Ni-Fe catalyst with HZSM-5 molecular sieve, and it was used to enhance the process of hydrogen-rich gas production by the catalytic pyrolysis of biomass. The results showed that the heat transfer efficiency decreased with the increase of heating rate during pyrolysis of biomass. After compensation, the apparent kinetic parameters (E and A) of pyrolysis of different biomass were obtained. At the pyrolysis temperature of 700 ℃, Ni-Fe/HZSM-5 catalyst increased the yield of hydrogen-rich gas to 56.49% (about 230.59 mL/g), hydrogen yield to 63.12%, hydrogen production efficiency to 0.71%, and CO yield to 65.77 mL/g. Sufficient amount of Ni-Fe/HZSM-5 catalyst enhanced the pathway of hydrogen production by the catalytic pyrolysis of biomass, promoted the gasification reaction of carbon deposition, and played a dual role in increasing the yield of H2 and CO. The synergism between HZSM-5 and ASA carriers enhanced the reforming process of CH4 and CO2, inhibited the reverse water vapor shift reaction, obtained 53.37% and 41.56% gas and tar yields. At the same time, the gasification reaction of carbon deposition was also accelerated, reduced the char yield to 5.07%, and obtained the carbon deposition of 0.05 g/g. Ni-Fe/ASA@HZSM-5 had good thermal cracking ability and deoxidization ability, which was helpful to promote the formation of hydrogen-rich gas on HZSM-5 as a base catalyst. From the point of view of proximate analysis and chemical composition of biomass, the composition of different kinds of biomass varied greatly, and the product distribution of catalytic pyrolysis also had a great influence. The order of gas yield of pyrolysis of biomass catalyzed by Ni-Fe/HZSM-5 was PR (74.21%) > WSt (54.71%) > CR (53.5%) > MCh (52.47%) > WSh (52.10%) > CS (46.49%), which provided theoretical support for the development of deep purification and efficient utilization of high temperature pyrolysis gas, and effectively guided the development of a new double catalytic bed for multi-stage catalytic reforming.
  • 关键词

    HZSM-5铝灰废弃生物质催化热解富氢燃气

  • KeyWords

    HZSM-5;aluminum ash;waste biomass;catalytic pyrolysis;hydrogen-rich gas

  • 基金项目(Foundation)
    国家重点研发计划(2022YFB4201901)和江苏省碳达峰碳中和科技创新专项资金项目(BE2022426)资助
  • DOI
  • 引用格式
    李学琴, 刘鹏, 卢岩, 王志伟, 吴幼青, 雷廷宙. 废弃生物质催化热解制富氢燃气:催化剂性能的影响[J]. 燃料化学学报(中英文), 2024, 52(7): 976-987.
  • Citation
    LI Xueqin, LIU Peng, LU Yan, WANG Zhiwei, WU Youqing, LEI Tingzhou. Catalytic pyrolysis of waste biomass to produce hydrogen-rich gas:Influence of catalyst performance[J]. Journal of Fuel Chemistry and Technology, 2024, 52(7): 976-987.
  • 图表

    Table1

    表 1 新鲜催化剂的物理特性及孔道特性
    Fresh catalystBET surface area/(m2·g−1)t-plot micropore area/(m2·g−1)t-plot external surface area/(m2·g−1)Total pore
    volume/(cm3·g−1)
    Pore size
    /nm
    ASA262.130.446.75
    HZSM-5276.21145.49130.720.233.26
    Ni/HZSM-5241.83155.4886.350.193.16
    Ni-Fe/HZSM-5219.50133.0284.480.173.11
    Ni-Fe/ASA@HZSM-5195.90107.5988.310.163.17

    Table2

    表 2 不同升温速率下玉米秸秆热解反应动力学参数
    β/(mL·min−1)CSMChCR
    E/(kJ·mol−1)A/min−1E/(kJ·mol−1)A/min−1E/(kJ·mol−1)A/min−1
    1074.961498.0274.881474.3973.041237.76
    2073.211253.5673.501290.4872.271150.18
    3072.811210.3074.601430.4972.441169.72
    4072.611186.4073.751316.8371.771099.88
    β/(mL·min−1)WShWStPR
    E/(kJ·mol−1)A/min−1E/(kJ·mol−1)A/min−1E/(kJ·mol−1)A/min−1
    1071.331059.1772.481178.6173.891341.81
    2071.511073.7472.201143.2572.221144.56
    3071.691093.5472.181143.5471.691091.38
    4071.951119.7072.481179.2371.631084.02

    Table3

    表 3 生物质热解的反应动力学参数
    SampleE/(kJ·mol−1)A/min−1SampleE/(kJ·mol−1)A/min−1
    CS73.391237.27WSh71.621061.48
    MCh74.181379.27WSt72.341142.08
    CR72.381147.11PR72.361144.39

    Table4

    表 4 反应后催化剂的孔道特性
    Reacted catalystASAHZSM-5Ni/HZSM-5Ni-Fe/HZSM-5Ni-Fe/ASA@HZSM-5
    BET surface area/(m2·g−1)48.95219.99235.49214.4136.12
    t-plot micropore area/(m2·g−1)33.09157.67167.17172.84104.48
    t-plot external surface area/(m2·g−1)15.8662.3268.3241.5631.64
    Total pore volume/(cm3·g−1)0.090.150.180.150.10
    Pore size/nm7.132.753.032.722.94
    Average nanoparticle size/nm122.5827.2725.4827.9944.08
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联