• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
煤电基地CO2和CH4遥感监测及时空特征分析
  • Title

    Remote sensing monitoring and spatiotemporal characteristics of CO2 and CH4 concentrations in coal-electricity production bases

  • 作者

    徐燕飞陈永春李静刘晓舟苗伟赵得荣芮成奇

  • Author

    XU Yanfei;CHEN Yongchun;LI Jing;LIU Xiaozhou;MIAO Wei;ZHAO Derong;RUI Chengqi

  • 单位

    深部煤炭安全开采与环境保护全国重点实验室中国矿业大学 环境与测绘学院安徽省煤矿绿色低碳发展工程研究中心淮南大气科学研究院

  • Organization
    State Key Laboratory for Safe Mining of Deep Coal Resources and Environment Protection
    School of Environment and Spatial Informatics, China University of Mining and Technology
    Anhui Province Engineering Research Center of Coal Mining Green Low-Carbon Development
    Huainan Academy of Atmospheric Sciences
  • 摘要

    【目的】CO2和CH4是煤电基地能源生产活动中的主要温室气体排放种类。【方法】为研究煤电基地CO2和CH4时空特征,以安徽淮南市为例,利用GOSAT、OCO-2和Sentinel-5P这3种卫星数据进行研究区CO2和CH4浓度监测,得到CO2、CH4柱浓度(XCO2和XCH4)变化和分布情况,采用源清单法分析CO2行业和区域排放特征,同时采用Pearson相关系数和多元回归方法分析影响研究区XCO2和XCH4浓度的主控因素。【结果与结论】结果表明:(1)基于GOSAT和OCO-2卫星融合数据分析显示,淮南市2016—2020年XCO2和XCH4浓度整体呈增长趋势,期间XCO2柱浓度增加12×10−6、XCH4浓度增加23×10−9;XCO2浓度和累计发电量的Pearson相关系数为0.98,XCH4浓度和累计煤炭产量的Pearson相关系数为0.99,均呈极强相关。(2)利用Sentinel-5P卫星搭载的对流层观测仪(TROPOMI)高分辨产品数据分析淮南市各区域XCH4浓度分布时空特征发现,研究区秋季XCH4浓度高于夏季,XCH4浓度受能源生产和农业生产两方面的影响。(3)源清单法得出淮南市一级源分类CO2排放最多的为化石燃料固定燃烧源,占全市CO2总排放量的89.59%,化石燃料固定燃烧源中电力供热占比99%以上;主要为淮南市潘集区和凤台县燃煤电厂CO2排放;源识别显示集中分布在淮南市北部的火力发电厂为研究区CO2最主要排放源。(4)影响研究区XCO2浓度的主控因素为地区生产总值、累计发电量和第二产业产值,影响XCH4浓度的主控因素为累计煤炭产量、第一产业产值、播种面积。研究结果对我国“双碳”目标下煤电基地碳监测体系构建与完善具有重要的参考意义。

  • Abstract

    [Objective] CO2 and CH4 are identified as the primary greenhouse gases emitted from energy production in coal-electricity production bases. [Method] This study investigated Huainan City, Anhui Province as an example to explore the spatiotemporal characteristics of CO2 and CH4 in coal-electricity production bases. Specifically, this study examined the CO2 and CH4 concentrations in the study area based on data from the GOSAT, OCO-2, and Sentinel-5P satellites, determining the concentration changes and distribution of XCO2 and XCH4. A sourcing method of inventory was employed to analyze the industrial and regional CO2 emission characteristics, and Pearson's correlation coefficient and multivariate regression were used to analyze the dominant factors affecting the XCO2 and XCH4 concentrations in the study area. [Results and Conclusions] Key findings are as follows: (1) The analysis of fusion data from the GOSAT and OCO-2 satellites indicate that the XCO2 and XCH4 concentrations in Huainan generally trended upward from 2016 to 2020, with the XCO2 and XCH4 concentrations increasing by 12×10−6 and 23×10−9, respectively. The Pearson's correlation coefficient between the XCO2 concentration and cumulative power generation was 0.98, and that between the XCH4 concentration and cumulative coal production was 0.99, both indicating extremely strong correlations. (2) As revealed by the analytical results of the spatiotemporal distribution characteristics of the XCH4 concentration in various zones of Huainan City derived based on data from the high-resolution Tropospheric Monitoring Instrument (TROPOMI) equipped in the Sentinel-5P satellite, the XCH4 concentration in the city is affected by both energy and agricultural production, being higher in autumn than in summer. (3) The results obtained using the sourcing method of inventory indicate that the maximum CO2 emissions of the primary sources originated from the stationary combustion sources of fossil fuels, accounting for 89.59% of the total CO2 emissions across the city. Furthermore, over 99% of the stationary combustion sources of fossil fuels were used for electric heating. The primary CO2 emissions sources include the coal-fired power plants in Panji District and Fengtai County of Huainan City. Source identification results indicate that the fossil-fired power plants concentrated in the northern Huainan proved to be predominant sources of CO2 emissions in the study area. (4) The dominant factors affecting the XCO2 concentration in the study area include regional GDP, cumulative power generation, and the output of the secondary industries, while those influencing the XCH4 concentration encompass cumulative coal production, the output of the primary industries, and the sown area. The results of this study provide a valuable reference for the construction and improvement of carbon monitoring systems for coal-electricity production bases under the context of reaching the goals of peak carbon dioxide emissions and carbon neutrality.

  • 关键词

    碳排放遥感监测XCO2XCH4主控因素多元回归分析煤电基地安徽淮南市

  • KeyWords

    carbon emission;remote sensing monitoring;XCO2;XCH4;dominant controlling factor;multivariate regression analysis;coal-electricity production base;Huainan Anhui Province

  • 基金项目(Foundation)
    安徽省自然科学基金项目(2208085ME123);淮南市科技计划项目(2021A261)
  • DOI
  • 引用格式
    徐燕飞,陈永春,李静,等. 煤电基地CO2和CH4遥感监测及时空特征分析[J]. 煤田地质与勘探,2024,52(6):1−12. DOI: 10.12363/issn.1001-1986.23.09.0537
  • Citation
    XU Yanfei,CHEN Yongchun,LI Jing,et al. Remote sensing monitoring and spatiotemporal characteristics of CO2 and CH4 concentrations in coal-electricity production bases[J]. Coal Geology & Exploration,2024,52(6):1−12. DOI: 10.12363/issn.1001-1986.23.09.0537
  • 图表
    •  
    •  
    • 我国能源生产结构

    图(9) / 表(11)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联