-
Title
Study on emissivity measurement of different types of coal and gangue using the matching method
-
作者
张锦旺何庚韩星张珈鸣
-
Author
ZHANG Jinwang;HE Geng;HAN Xing;ZHANG Jiaming
-
单位
中国矿业大学(北京)能源与矿业学院厚煤层绿色智能开采教育部工程研究中心放顶煤开采煤炭行业工程研究中心机械与电气工程学院
-
Organization
School of Energy and Mining Engineering, China University of Mining and Technology-Beijing
Engineering Research Center of Green and Intelligent Mining for Thick Coal Seam, Ministry of Education, China University of Mining and Technology-Beijing
Coal Industry Engineering Research Center of Top-coal Caving Mining, China University of Mining and Technology-Beijing
School of Mechanical and Electrical Engineering, China University of Mining and Technology-Beijing
-
摘要
煤和矸石的种类、表面纹理结构、变质和发育程度等因素都会对其发射率产生较为显著的影响,精准的发射率参数设置对红外热像仪测温及煤和矸石红外图像的识别至关重要。提出了一种基于匹配法的煤和矸石发射率测量方法,即采用表面热电偶与红外热像仪相结合的方式测量煤和矸石发射率。用密闭的电热炉对被测煤和矸石进行均匀加热,待被测煤和矸石均匀受热且稳定后,用表面热电偶对被测煤和矸石的选定区域进行真实温度测定(标定为t1),然后用红外热像仪对同一区域进行温度测定(标定为t2),最后对红外热像仪的发射率进行调试,当t2=t1时,得出的发射率即为被测煤和矸石在该温度下的真实发射率。实验结果表明:① 等温条件下,煤和矸石表面越粗糙,其发射率数值越大,表明煤和矸石表面的粗糙度是导致二者产生不同发射率的内在因素。② 4种不同种类煤和矸石发射率随温度的增大呈幂函数降低,且拟合函数相关系数R2达0.98以上,验证了匹配法应用于煤和矸石发射率测量的可行性。③ 采用反代法得出在不同温度条件下实测值与理论值的误差率均小于3%,验证了实验中测量的煤和矸石发射率的准确性。
-
Abstract
The type, surface texture, metamorphic degree, and developmental stage of coal and gangue significantly influence their emissivity. Accurate settings for emissivity parameters are essential for infrared temperature measurements and the identification of coal and gangue in infrared images. This study proposed a method for measuring the emissivity of coal and gangue based on the matching method. The approach integrated surface thermocouples with infrared thermography to assess emissivity. Samples were uniformly heated in a closed electric furnace, and once the temperature stabilized, a surface thermocouple measured the actual temperature of a selected area (denoted as t1). Concurrently, the infrared thermography system measured the temperature of the same area (denoted as t2). The emissivity of the infrared thermography system was calibrated until t2 equaled t1. At this point, the calculated emissivity reflected the true emissivity of the coal and gangue at that temperature. The experimental results indicated that: ① Under isothermal conditions, greater surface roughness of coal and gangue correlated with higher emissivity values, suggesting that surface roughness is a fundamental factor restricting the emissivity of these materials. ② The emissivity of four different types of coal and gangue decreased with increasing temperature, following a power function, with the fitting function's correlation coefficient (R2) exceeding 0.98, thereby confirming the feasibility of the matching method for measuring emissivity. ③ The inverse method revealed that the error rates between the measured and theoretical values under varying temperature conditions were all below 3%, validating the accuracy of the measured emissivity of coal and gangue.
-
关键词
煤和矸石发射率煤和矸石表面温度匹配法表面热电偶红外热像仪反代法
-
KeyWords
emissivity of coal and gangue;surface temperature of coal and gangue;matching method;surface thermocouple;infrared thermography;inverse method
-
基金项目(Foundation)
国家自然科学基金面上项目(52374148); 北京市自然科学基金面上项目(2232059);中央高校基本科研业务费资助项目(2023JCCXNY04, 2023YQTD02)。
-
DOI
-
引用格式
张锦旺,何庚,韩星,等. 基于匹配法的不同种类煤和矸石发射率测量研究[J]. 工矿自动化,2024,50(9):13-19, 27.
-
Citation
ZHANG Jinwang, HE Geng, HAN Xing, et al. Study on emissivity measurement of different types of coal and gangue using the matching method[J]. Journal of Mine Automation,2024,50(9):13-19, 27.
-
相关专题
-
图表