• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于一维双重注意力网络的输送带纵向撕裂检测算法
  • Title

    Longitudinal tear detection algorithm of conveyor belt based on DANet-1D

  • 作者

    向兆军游磊罗明华

  • Author

    XIANG Zhaojun;YOU Lei;LUO Minghua

  • 单位

    中煤科工集团重庆研究院有限公司煤矿灾害防控全国重点实验室

  • Organization
    CCTEG Chongqing Research Institute
    State Key Laboratory of Coal Mine Disaster Prevention and Control
  • 摘要
    针对传统的基于机器视觉的带式输送机输送带撕裂检测算法需要高算力、高功耗AI模组,本安电源无法满足其用电需求的问题,提出一种基于一维双重注意力网络(DANet-1D)的输送带纵向撕裂检测算法。通过工业相机采集输送带表面线激光形成的图像;设计激光条纹特征滤波器,提取条纹特征;设计基于一维双重注意力网络的撕裂检测算法,将撕裂的二维图像数据降维,在一维空间进行神经网络检测,运行速度更快且支持高分辨率图像;研制本安型输送带撕裂检测装置,并进行验证。结果表明:该算法的准确率P为92.54%,召回率R为91.78%,每帧平均检测时间为12.40ms。工业性试验成功检测出输送带模拟撕裂,为输送带纵向撕裂提供了一种新的检测方案。
  • Abstract
    In view of the problem that the traditional machine vision based conveyor belt tear detection algorithm requires high computing power and high power consumption AI module,and the intrinsic safety power supply can not meet its electrical needs,a longitudinal tear detection algorithm of conveyor belt based on one-dimensional dual attention network(DANet-1D) was proposed. The image of conveyor belt surface line laser was collected by industrial camera. The laser stripe feature filter was designed to extract stripe features. A tear detection algorithm based on DANet-1D was designed to reduce the dimensionality of the torn two - dimensional image data. The detection of neural network operated in one - dimensional space, run faster and supported high-resolution images. An intrinsic safe conveyor belt tear detection device was developed and verified. The results show that the accuracy P of the algorithm is 92. 54%,and the recall rate R is 91. 78%. The average detection time per frame is 12. 40 ms. The industrial test successfully detected simulated tearing of the conveyor belt,providing a new detection scheme for longitudinal tear of the conveyor belt.
  • 关键词

    带式输送机输送带纵向撕裂线激光机器视觉一维双重注意力网络深度学习

  • KeyWords

    belt conveyor;conveyor;longitudinal tear;line laser;machine vision;DANet-1D;deep learning

  • 基金项目(Foundation)
    中煤科工集团重庆研究院自立重点研发科研项目(2023ZDYF01)
  • DOI
  • 引用格式
    向兆军,游磊,罗明华.基于一维双重注意力网络的输送带纵向撕裂检测算法[J].矿业安全与环保,2024,51(5):89-95.
  • Citation
    XIANG Zhaojun,YOU Lei,LUO Minghua. Longitudinal tear detection algorithm of conveyor belt based on DANet-1D[J].Mining Safety & Environmental Protection,2024,51(5):89-95.
  • 相关文章
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联