Mine water inrush risk identification method based on MRAU video segmentation model
武强张帅杜沅泽徐华赵颖旺
WU Qiang;ZHANG Shuai;DU Yuanze;XU Hua;ZHAO Yingwang
中国矿业大学(北京) 内蒙古研究院中国矿业大学(北京) 国家煤矿水害防治工程技术研究中心矿山水防治与资源化利用国家矿山安全监察局重点实验室北京石油化工学院 信息工程学院
矿井涌(突)水视频识别是智能化矿井建设的关键之一,通过识别涌(突)水从无到有、从小到大的动态演变过程,有助于防止水量超出矿井排水能力并演变为水害。为此提出了一种基于多通道残差注意力机制的U2Net视频分割模型(MRAU),旨在识别涌(突)水的演变过程。首先,基于卷积注意力模块(CBAM)改进U2Net网络模型,以提高特征提取效果。通过多通道残差预处理,区分水流动态特征与静态背景,并将处理结果作为注意力机制输入模型,从而强化水流特征的学习。此外,使用中间帧掩码作为标签进行多帧融合学习,进一步提升网络对水流动态特征的识别能力。最终,通过学习不同场景下的水流特征,实现对未知场景中涌(突)水动态演变的有效识别。通过与Deeplab、LRASPP、FCN、U2Net网络模型的对比试验,选用
Mine water inrush video recognition is a key component in intelligent mine construction. By recognizing the dynamic evolution of water inrush from none to some and from small to large, it helps prevent the water volume from exceeding the mine's drainage capacity and turning into a water hazard. Therefore, a video segmentation model based on the Multi-channel Residual Attention mechanism and U2Net (MRAU) was proposed to identify the evolution process of water inrush. First, the U2Net network model was improved based on the Convolutional Block Attention Module (CBAM) to enhance feature extraction. Then, through multi-channel residual preprocessing, the dynamic features of water flow were distinguished from the static background, and the processed results were input into the model as an attention mechanism to reinforce the learning of water flow features. In addition, intermediate frame masks were used as labels for multi-frame fusion learning, further enhancing the network’s ability to recognize the dynamic features of water flow. Finally, by learning the water flow features in different scenarios, the model effectively recognizes the dynamic changes of water inrush in unknown scenarios. Comparative experiments with Deeplab, LRASPP, FCN, and U2Net network models, using
矿井涌(突)水视频分割MRAU多通道残差预处理注意力机制U2Net
mine water inrush;video segmentation;MRAU;multichannel residual preprocessing;attention mechanism;U2Net
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会