Coal mine dust concentration prediction method based on multivariate time series
邓勤
DENG Qin
煤矿灾害防控全国重点实验室中煤科工集团重庆研究院有限公司
为了提高矿井粉尘浓度预测精度,针对煤矿粉尘浓度数据的时序特征,提出了一种基于多元时间序列分析的煤矿粉尘浓度预测方法。采用变分模态分解(VMD)将粉尘浓度时序信号分解为趋势、周期和随机波动3个维度;分别利用灰色模型(GM(1, 1))、霍尔特-温特斯(Holt-Winters)三次指数平滑法及自回归移动平均(ARMA(
To enhance the accuracy of dust concentration prediction in coal mines, a prediction method of coal mine dust concentration based on multivariate time series analysis was proposed according to the time series characteristics of coal mine dust concentration data. The method began by employing variational mode decomposition (VMD) to decompose the dust concentration time series signal into three components: trend, periodic, and random fluctuations. Subsequently, each component was predicted using different models: the grey prediction model (GM(1, 1)), the Holt-Winters triple exponential smoothing method, and the autoregressive moving average (ARMA(
粉尘浓度预测时序数据变分模态分解灰色模型霍尔特-温特斯三次指数平滑法自回归移动平均模型
dust concentration prediction;time series data;variational mode decomposition;gray prediction model;Holt-Winters triple exponential smoothing method;autoregressive moving average model
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会