Study on in-situ microbial methanogenesis of CO2 and in-situ inhibition of H2S and increase of coalbed methane production in low-quality coalbed methane of the Southern Junggar Basin
苏现波丁锐赵伟仲严德天李瑞明王一兵王海超黄胜海周艺璇王小明伏海蛟
SU Xianbo;DING Rui;ZHAO Weizhong;YAN Detian;LI Ruiming;Wang Yibing;WANG Haichao;HUANG Shenghai;ZHOU Yixuan;WANG Xiaoming;FU Haijiao
河南理工大学 资源环境学院河南理工大学 非常规天然气研究院中国地质大学 资源学院中原经济区煤层(页岩)气协同创新中心新疆维吾尔自治区煤田地质局新疆亚新煤层气投资开发(集团)有限责任公司新疆大学 地质与矿业工程学院乌鲁木齐国盛新能源投资开发(集团)有限公司
煤层气作为一种非常规天然气,其开发利用契合国家能源安全目标,更是对碳中和的一种助力。准南是我国重要的煤层气资源富集区之一,也是目前中国煤层气开发的热点地区,但高产井数量不多,稳产困难,迫切需要一种能够增加单井控制范围内煤层气资源量的技术;同时高CO2和高H2S体积分数已经成为该区煤层气的普遍现象,迫切需要一种原位处置这2种有害气体的技术,煤层气生物工程为此类煤层气的“提质增量”提供一种潜在可行技术。现场的跟踪监测以及实验室物理模拟试验表明,CO2的体积分数与储层温度密切相关,产酸发酵细菌和产氢产乙酸菌能够在较为宽广的储层温度下保持活性而产生CO2;而相对较低的储层温度下氢营养型产甲烷菌代谢较弱、CO2很难被还原,这是该区CO2的主要成因。此外发现地下水中携带的有机质、SO42−和原始菌群在运移过程中进行着代谢活动,随着排采的长期进行,当地下水补给速率、排采速率和产甲烷菌的代谢周期相匹配时,就会生成的H2S,被称为后生生物H2S。这2种酸性气体的存在,不仅影响安全生产,也大幅降低了煤层气的“质”。以准南低质煤层气为研究对象,提出了一种微生物介导的煤层气原位提质增量关键技术,并从必要性和可行性两方面阐述了该技术在煤层气增产、CO2原位微生物转化、H2S原位抑制方面的广阔前景。该技术的基本思路是将煤储层作为一个“车间”,微生物作为“劳动力”,将煤和原始储层中CO2作为“生产资料”,制造的“产品”为甲烷,对于CO2实现了生物甲烷化,对于H2S实现了原位抑制,对于煤层气实现了提质增量。该技术涉及的关键挑战包括高效菌群的培养(培育温度范围宽广的氢营养型产甲烷菌)、H2S原位抑制的生物压裂液研制以及提质增量的评价技术。物理模拟CO2微生物甲烷化实验表明随着储层温度的增加,CO2微生物累计甲烷化量逐渐增加,在55 ℃下达到最大值8.5 m3/t,参与该过程的糖酵解、丙酮酸代谢和TCA循环的关键酶的丰度在55 ℃下明显高于其他原位厌氧发酵系统,提高了CO2的转化效率与转化量;添加生物抑制剂的非CO2气氛厌氧发酵系统生物甲烷产量为4.5 m3/t,略高于对照组的4.38 m3/t;而气态H2S的体积分数比对照组减少了88.8%,且从第9天开始到产气结束一直为0,实现了H2S的原位抑制。
The development and utilization of coalbed methane (CBM) not only ensures national energy security, but also provides a boost to carbon neutrality. The southern edge of the Junggar Basin is a major CBM resource area and a key development hotspot in China. However, the region has few high-yield wells, and maintaining stable production is challenging. There is an urgent need for a technology that can increase the production of CBM resources within the control range of a single well. Additionally, high volume fractions of CO2 and H2S have become common in the CBM of this region, creating an urgent need for in-situ disposal technology for these gases. Coalbed gas bioengineering offers a promising technology for enhancing both the quality and production of CBM in this region. On-site monitoring and laboratory simulation experiments indicate that the CO2 volume fraction is closely linked to reservoir temperature. Acid-producing fermentative bacteria and Hydrogen-producing acetic acid bacteria remain active and continue to produce CO2 across a broad range of reservoir temperatures. At lower reservoir temperatures, the metabolism of hydrogenotrophic methanogens is weak and CO2 is difficult to be reduced, which is the main reason for the high CO2 volume fraction in this area. It was also found that the microbial community in the groundwater interacts with organic matter and ${mathrm{SO}}_4^{2-} $ during migration. H2S is generated when the groundwater recharge and drainage rates are consistent with the metabolic cycle of methanogens, which is called epigenetic H2S. The presence of these two acidic gases not only compromises production safety but also significantly reduces the quality of CBM. This study introduces a key technology for
准噶尔盆地南缘(准南)低质煤层气CO2生物甲烷化H2S原位抑制提质增量
Southern Junggar Basin;low-quality coalbed methane;CO2 microbial methanogenesis;in-situ H2S inhibition;quality improvement and production increase
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会