摘要
为判断鼠笼式三相异步电动机转子断条故障情况,提出了一种利用定子电流信号,基于ARMA和遗传算法优化的BP神经网络的诊断方法。首先,使用改进的ARMA算法对电动机的定子电流波形进行拟合,将自回归系数模型系数提取出来,作为表征电动机故障的特征向量,并分为训练集和测试集。然后利用遗传算法优化BP神经网络的初始阈值和权值,以避免BP神经网络陷入局部极值点的问题。再用训练集对BP神经网络进行训练,用训练好的神经网络对测试集进行判断。实验结果显示,ARMA模型可较好地对三相异步电动机定子电流波形进行拟合,BP神经网络可较为准确地判断特征向量表征的故障情况,此方法具有较好的诊断结果。