-
Title
Study on Variation Law of Coalbed Methane Physical Property Parameters with Seam Depth
-
作者
叶建平张守仁凌标灿郑贵强吴见李丹琼
-
Author
YE Jian-ping ZHANG Shou-ren LING Biao-can ZHENG Gui-qiang WU Jian LI Dan-qiong
-
单位
中联煤层气有限责任公司华北科技学院中国石油大学(北京)
-
Organization
China United Coalbed Methane Corporation Limited North China Institute of Science and Technology China
University of Petroleum ( Beiing)
-
摘要
针对深部煤层煤层气的"高地应力、低渗透性"特性导致开发难度大的问题,分析了沁水盆地南部煤层气井岩心试验数据和测井、试井、压裂、生产等实际资料,研究了主要储层物性参数与埋深的关系。研究结果表明:不同储层物性随埋深变化规律各不同,具有跃变式变化特征;拐点变化值并不是一个确定埋深。利用BP神经网络模拟物性参数变化拐点的结果表明:选取的关键参数不同,得到的物性随埋深变化拐点值是不一致的。以力学参数为关键参数的深部煤层埋深拐点为1 043 m;侧重物性参数的埋深拐点为659~950 m;以产能因素为关键参数的埋深拐点为927~1 171 m。
-
Abstract
According to high difficult development caused by high geostress and low permeability features of the coalbed methane in deep seam, the paper analyze
d the rock core test data of the coalbed methane well in the south part of Qinshui Basin and the logging, well test, fracturing, production and other actual informations of
the coalbed methane well and studied the relationship between the physical property parameters of main reservoir and depth. The study results showed that the variatio
n law of different reservoir with seam depth would be different and would have jumped type variation features. The variation value of the inflection point would not be a
certain buried depth value. The results of the changed inflection point of the physical property parameter simulated with BP neural network showed that due to the select
ed key parameters different, the obtained physical property with the changed inflection point of the depth would be different. The inflection point value of the deep seam
depth with the mechanics parameters as the key parameters was 1 043 m. The deep seam depth inflection point value of the particular physical property parameters wa
s 659 ~ 950 m. The deep depth inflection point value with production factors as the key parameters was 927 ~ 1 171 m.
-
关键词
深部煤层煤层气储层物性神经网络沁水盆地渗透率地应力
-
KeyWords
deep seam; coalbed methane; reservoir physical property; neural network; Qinshui Basin; permeability; geostress;
-
基金项目(Foundation)
国家科技重大专项资助项目(2011ZX05042);
-
相关文章