• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会

新一代智能煤矿关键技术研究与应用

来源:工矿自动化

专题来自于《工矿自动化》2022年第10期,共14篇成果。

新一代智能煤矿是在新一代智能制造背景下提出的煤炭行业智能化新一代发展模式,旨在将云计算、大数据、5G、物联网、人工智能等新一代信息技术与煤矿生产过程深度融合,实现煤矿开采、掘进、运输、通风、安监、煤炭分选等关键环节的数字化、信息化、智能化管控。目前智能煤矿发展处于初级阶段,随着工业互联网、人工智能、机器人等先进技术在煤矿关键生产环节的融合应用,为新一代智能煤矿奠定了基础。为进一步总结、交流我国新一代智能煤矿关键技术最新进展,《工矿自动化》编辑部特邀太原理工大学金智新院士担任专题客座主编,太原理工大学王宏伟教授、付翔讲师担任专题客座副主编,于 2022 年第 10 期组织出版“新一代智能煤矿关键技术研究与应用”专题。在专题刊出之际,衷心感谢各位专家学者的大力支持!

行业视野

智能化

类别

87个

关键词

46位

专家

14篇

论文

3548IP

点击量

1986次

下载量
  • 作者(Author): 张书林, 杨建, 舒龙勇

    摘要:目前煤矿瓦斯治理管理关键环节仍需要人工监督,瓦斯治理措施达不到“质量可靠”和“过程可溯”,且瓦斯治理管理模式落后造成职能重叠、流程不畅、数据共享程度低。针对上述问题,基于工作流技术,从全局管理的角度开展了煤矿瓦斯治理动态工作流构建方法研究。首先,对采掘工作面和揭煤工作面瓦斯治理的工作流程、约束条件和实施过程进行了分析,将瓦斯治理流程划分为测试和措施2类环节,并具体化为技术文档和报告单审批、钻孔施工、取制样、瓦斯参数测定、抽采及其参数检测等5类工作。然后,将上述后4类工作重构,并进一步拆分为25个基本工作单元,利用Petri Nets对基本工作单元进行组合,用于建立不同跨部门瓦斯治理复杂业务工作流程,基于瓦斯治理工作流程图建立工作面瓦斯治理执行进度表示方法,采用主动和自动相结合的策略对工作流进行任务分配,使用描述文件动态生成和配置工作流网络满足对瓦斯治理动态工作流建模的要求。最后,基于Flowable工作流引擎进行瓦斯治理动态工作流功能的开发和应用。结果表明,动态工作流的构建可以使瓦斯治理业务流程化,有利于提升瓦斯治理协同执行效率,实现数据的快速流转、追踪和共享,便于监控瓦斯治理工作的整体运行和优化,提高煤矿瓦斯治理决策能力,创新煤矿瓦斯治理管理模式。
    免费下载
    工矿自动化
    2022年第10期
    238
    80
  • 作者(Author): 贾天毅, 徐立军, 陈志峰, 唐佳

    摘要:现有局部通风机变频控制方法缺少对瓦斯突变量的预判,当大量瓦斯异常涌出时,调节存在一定滞后性,易导致瓦斯积聚。针对该问题,设计了基于模糊理论的局部通风机变频控制系统。采用瓦斯模糊控制器和风量模糊控制器实现模糊控制,对2个模糊控制器输出的控制量进行比较,根据较大值确定通风机变频情况,当两者相等时以瓦斯模糊控制为主。采用基于瓦斯涌出量的等级划分方法,以最远工况点对应风量为辅助,将通风机频率划分为4个等级。将掘进工作面瓦斯体积分数达到0.8%设置为升频条件,将瓦斯体积分数不大于0.6%或0.5%设置为降频条件,同时设定通风机降频后的供风量为达到降频条件时将回风流瓦斯体积分数控制在0.7%或0.6%所需的供风量。当大量瓦斯异常涌出时,通风机升频以降低瓦斯浓度,同时,通风机供风量可满足更大的瓦斯排放需求,为调整提供一定缓冲,克服变频控制滞后的缺点。试验结果表明:降频条件中瓦斯体积分数为0.5%,降频后供风量为达到降频条件时将回风流瓦斯体积分数控制在0.6%所需供风量,该条件下控制效果较好,但I级供风量略小于最远掘进距离处所需的最小供风量,可新设一个介于I级和II级之间的频率等级I*级,通过提高通风机频率来增加供风量,满足最远掘进距离处最小风量需求。
    免费下载
    工矿自动化
    2022年第10期
    268
    145
  • 作者(Author): 张栋, 姜媛媛

    摘要:针对现有基于人工及仪器的钻杆计数法存在精度较低、耗时耗力,现有基于图像处理的钻杆计数方法难以提取图像特征,网络模型复杂度高、计算量大等问题,提出了一种基于改进MobileNetV2的钻杆计数方法。通过摄像头采集钻机工作状态图像,采用数据增强对采集的图像进行预处理,在MobileNetV2的基础上,添加卷积注意力模块增强特征的细化能力,优化目标函数提升识别精度,通过迁移学习获取初始参数。将改进后的MobileNetV2作为钻机工作状态识别模型,提取钻机工作状态特征,通过识别钻杆钻进完整过程中装钻杆、打钻杆、卸钻杆、停机4种钻机工作状态生成置信度数据,通过滑动窗口对置信度数据进行滤波,统计钻杆数量,明确钻孔深度。实验结果表明:改进后的MobileNetV2模型识别准确率达99.95%,与经典分类模型ResNet50,Xception,InceptionV3,InceptionResNetV2,MobileNetV2相比,准确率分别提升了1.35%,1.28%,1.43%,0.85%,1.25%,参数量比MobileNetV2模型减少了38.9%,模型收敛速度更快,综合性能更好。将基于改进MobileNetV2的钻杆计数方法应用于煤矿综采工作面的钻杆计数中,平均钻杆计数精度为98.4%,实现了钻杆精确计数,验证了该方法在复杂环境下应用的可行性和实用性。
    免费下载
    工矿自动化
    2022年第10期
    226
    158
  • 作者(Author): 张夫净, 王宏伟, 王浩然, 李正龙, 王宇衡

    摘要:煤矿井下掘进巷道使用钢带辅助锚杆支护时,如果支护钢带锚孔的定位不准确,钻头打在钢带或锚网上易造成设备损坏,存在较大安全隐患。针对上述问题,提出了一种基于改进YOLOv5s模型的煤矿巷道支护钢带锚孔智能识别与定位方法。(1)通过超分辨率重构技术(SR)增加锚孔图像的清晰度,防止因图像模糊而丢失图像中锚孔边缘高频信息。(2)由于锚孔较小且摄像头距锚孔有一定距离,在卷积神经网络中易丢失较小锚孔的特征信息,影响锚孔检测效果。在YOLOv5s模型的Backbone网络中添加坐标注意力机制(CA)模块,增加YOLOv5s网络中特征提取网络的网络层数,将目标物体的坐标信息融入到卷积网络中,可有效提取锚孔小目标特征信息,从而提高锚孔检测成功率。(3)利用嵌入CA模块的YOLOv5s网络训练经SR重构后的锚孔数据集,得到改进后的YOLOv5s模型,即SR-CA-YOLOv5s模型。(4)采用SR-CA-YOLOv5s模型结合双目摄像头对锚孔进行实时识别与定位。实验结果表明:相较于YOLOv5s模型,SR-CA-YOLOv5s模型的平均精度均值为96.8%,较YOLOv5s模型提高了3.1%;SR-CA-YOLOv5s模型有更好的检测能力,在一定程度上避免了漏检;虽然SR-CA-YOLOv5s模型的每秒填充图像的帧数(FPS)降低了18.5帧/s,但其FPS仍保持在166.7帧/s,并不影响模型的实时检测功能。实际测试结果表明:SR-CA-YOLOv5s模型能够在不同光照条件下准确检测出锚孔并获得锚孔相对于摄像头的三维坐标,坐标误差在6 mm以内,且FPS满足实时性要求。
    免费下载
    工矿自动化
    2022年第10期
    292
    188
  • 作者(Author): 荣耀, 曹琼, 安晓宇, 温亮, 赵云飞

    摘要:根据综采工作面三维激光扫描模型中煤壁与顶板交线信息,采煤机可自动调整滚筒截割高度,实现煤炭精准开采。现有技术实现了基于工作面激光点云的割煤顶板线自动提取,但提取结果不能直接应用于数字化自主割煤。针对该问题,提出了综采工作面三维激光扫描建模总体方案,并对煤壁与顶板交线提取、标靶球检测、点云拼接及坐标转换等关键技术进行了研究,实现了三维地质坐标系下煤壁与顶板交线信息的近实时获取,该信息可直接发送给采煤机滚筒,为采煤机下一刀截割提供数据参考。通过巡检机器人完成工作面扫描,获取巡检点云;基于煤壁与顶板交线的曲率特性,采用弦法向量法对煤壁与顶板交线进行粗提取;引入数据点法向量与邻域点法向量的夹角信息,通过阈值排除明显的非煤壁与顶板交线点。由于巡检点云与提取的交线信息均位于局部坐标系,通过定位标靶球检测和配准,完成机头点云、机尾点云与巡检点云的拼接,得到工作面联合点云。根据定位标靶球的三维地质坐标与局部坐标,得到坐标间的转换关系,通过坐标转换将联合点云转换到三维地质坐标系下,从而得到三维地质坐标系下的煤壁与顶板交线信息。井下工业性试验结果表明,采用综采工作面三维激光扫描技术提取煤壁与顶板交线的误差在10 cm以内,所有采样点中误差小于4 cm的采样点占比为50%,误差小于8 cm的采样点占比为96.67%。
    免费下载
    工矿自动化
    2022年第10期
    277
    183
  • 作者(Author): 唐俊, 李敬兆, 石晴, 刘阳, 宋世现, 任成成

    摘要:针对非接触式散状物料堆积检测方法存在检测速度慢、在图像模糊场景下检测精度低、深度学习模型内存需求大等问题,提出了一种基于轻量化Mask-RCNN(掩码-区域卷积神经网络)的带式输送机上散状物料堆积视频实时检测方法。首先,通过暗通道先验算法对采集的图像进行预处理,以减少运输装载过程中粉尘造成的图像雾化现象,提高图像边缘特征。针对传统的Mask-RCNN的主干网络ResNet无法满足在嵌入式平台上对散状物料堆积进行实时检测的需求问题,将去雾预处理后的图像输入到基于MobileNetV2+特征金字塔网络(FPN)的主干网络中进行特征提取,生成特征图,并对主干网络进行轻量化设计,以部署在嵌入式平台上,对实时采集图像数据进行实例分割。为更精确地找到分割物体的边缘,提出了在传统Mask-RCNN的掩码分支中添加边缘损失的方法,利用全卷积网络层生成掩码,结合Scharr算子构造边缘损失函数,融合目标分类、边界框回归、语义信息得到实例分割图像。最后,通过判断散状物料堆积掩码内的像素值是否超过预设阈值实现散状物料堆积检测。实验结果表明:所提方法的模型内存需求降低到以ResNet101为主干网络的模型的1/5,经图像去雾预处理后的平均精度均值提高了8%,单张图像平均检测时间为0.56 s,检测精度可达91.8%。
    免费下载
    工矿自动化
    2022年第10期
    236
    122
  • 作者(Author): 饶天荣, 潘涛, 徐会军

    摘要:对煤矿井下人员不安全行为进行实时视频监控及报警是提升安全生产水平的重要手段。煤矿井下环境复杂,监控视频质量不佳,导致常规基于图像特征或基于人体关键点特征的行为识别方法在煤矿井下应用受限。提出了一种基于交叉注意力机制的多特征融合行为识别模型,用于识别煤矿井下人员不安全行为。针对分段视频图像,采用3D ResNet101模型提取图像特征,采用openpose算法和ST-GCN(时空图卷积网络)提取人体关键点特征;采用交叉注意力机制对图像特征和人体关键点特征进行融合处理,并与经自注意力机制处理后的图像特征和人体关键点特征拼接,得到最终行为识别特征;识别特征经全连接层及归一化指数函数softmax处理后,得到行为识别结果。基于公共数据集HMDB51和UCF101、自建的煤矿井下视频数据集进行行为识别实验,结果表明:采用交叉注意力机制可使行为识别模型更有效地融合图像特征和人体关键点特征,大幅提高识别准确率;与目前应用最广泛的行为识别模型SlowFast相比,基于交叉注意力机制的多特征融合行为识别模型在HMDB51和UCF101数据集上的识别准确率分别提高1.8%,0.9%,在自建数据集上的识别准确率提高6.7%,验证了基于交叉注意力机制的多特征融合行为识别模型更适用于煤矿井下复杂环境中人员不安全行为识别。
    免费下载
    工矿自动化
    2022年第10期
    319
    172
  • 作者(Author): 史凌凯, 耿毅德, 王宏伟, 王洪利

    摘要:刮板输送机是煤矿井下的关键运输设备,铁质异物进入刮板输送机会引发磨损、断链等,甚至会造成停产、伤人等严重事故。现有刮板输送机异物识别方法存在对井下图像的适应性较差、无法区分异物类别与数量等问题。针对上述问题,提出了一种基于改进掩码区域卷积神经网络(Mask R-CNN)的刮板输送机铁质异物多目标检测方法。采用基于Laplace算子的图像增强算法对井下低照度、高粉尘环境下采集的图像进行预处理,对增强后的图像进行标注,制作数据集。采用Mask R-CNN模型的ResNet-50特征提取器获取铁质异物图像特征;采用特征金字塔网络进行特征融合,保证同时拥有高层的语义特征(如类别、属性等)和低层的轮廓特征(如颜色、轮廓、纹理等),以提高小尺度铁质异物识别精度;针对Mask R-CNN模型生成的锚点与待检测的铁质异物尺寸不对应的问题,对Mask R-CNN模型进行改进,采用k-meansⅡ聚类算法代替原来的锚点生成方案,通过遍历数据集中标注框的长宽信息得到聚类中心点,实现刮板输送机铁质异物多目标检测。实验结果表明,改进Mask R-CNN模型对单张图像的平均检测时间为0.732 s,与Mask R-CNN,YOLOv5相比,分别缩短0.093,0.002 s;平均精度为91.7%,与Mask R-CNN,YOLOv5相比,分别提高11.4%,2.9%。
    免费下载
    工矿自动化
    2022年第10期
    228
    146

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联