矿井人员图像分割是实现煤矿井下人员检测、行为识别、视频定位跟踪等技术的重要任务之一。然而,由于矿井下环境特殊,常规图像分割方法均难以满足对井下人员的准确分割要求。为解决矿井人员图像的分割问题,提出一种基于超像素粒化及同质图像粒聚类的分割方法,能够适用于煤矿井下多种场景的人员图像。首先,使用简单线性迭代聚类(simple linear iterativeclustering,SLIC)模型将井下人员图像初始分割为超像素单元,并通过测量离线样本图像中所标记人员像素点与超像素之间的RGB相似度值判定人员超像素。其次,由邻居超像素辅助检测欠分割人员超像素并将其彻底分割为两个子超像素单元,选择其中之一的精英人员超像素并提取其纹理和灰度特征。接着,将具有最相似图像特征的邻接精英人员超像素定义为同质图像粒,同质图像粒相互融合并聚类形成具有特定语义信息的同质人员区域。最后,由所有同质人员区域共同构成完整的人员区域,并实现人员区域与图像背景的分离。通过对煤矿井下四种场景下的人员图像进行算法性能验证,实验结果表明:超像素粒化算法的F-Measure值分别较对比算法平均值高出2.11%、3.36%、13.16%、6.82%,同质人员图像粒聚类算法精度值分别达到99%、100%、94.4%和93.75%,并且所提分割方法对井下四种不同场景中的人员图像均具有较强的鲁棒性和较好的分割效果。
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会