• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于光滑粒子动力学顶煤放落与输送过程仿真研究
  • Title

    Simulation study of top coal caving and conveying process based on smoothed particle hydrodynamics

  • 作者

    刘波张强刘洋董祥伟

  • Author

    LIU Bo;ZHANG Qiang;LIU Yang;DONG Xiangwei

  • 单位

    山东科技大学机械电子工程学院国家能源集团煤焦化有限责任公司国能蒙西煤化工股份有限公司

  • Organization
    College of Mechanical and Electronic Engineering, Shandong University of Science and Technology
    National Energy Group Coal Coking Co., Ltd.
    CHN Energy Mengxi Coal Chemical Industry Co., Ltd.
  • 摘要
    目前针对综放开采中顶煤放出规律的数值模拟研究中,对于顶煤运动的连续−非连续性问题需复杂的耦合算法,必须解决煤岩界面信息精确交互问题,且忽略了刮板输送机输送过程。针对该问题,基于光滑粒子动力学构建了无网格数值计算模型,通过建立连续介质力学控制方程的光滑粒子动力学离散方程,并引入弹塑性土体本构模型和Drucker−Prager屈服准则,实现了顶煤坍塌、运移、放出过程的动态模拟。考虑采场实际放煤和输煤过程,构建了刮板输送机模型,模拟沿工作面水平方向顶煤放出和底煤输送过程,得到不同刮板输送机运行速度(0~1.5 m/s)下的煤岩界面和煤流速度变化规律。仿真结果表明:弹塑性土体本构模型可有效模拟颗粒的流动行为,通过设定摩擦角、弹性模量等材料参数,避免了传统离散元法模型的参数不定问题;煤流速度稳定后,放煤口附近的顶煤应力分布呈 “双峰”形态;刮板输送机运行速度对放煤时间影响较大,但对终止的煤岩界面和放出体形状影响较小;多支架同时放煤需考虑刮板输送机的输送能力,不同支架之间的底煤输送干涉可能导致放煤口的堵塞效应; “见矸关门”准则导致不同放煤口放煤量存在差异,40个放煤口顶煤放出量的标准差(7.52 m2)高于自动放煤的标准差(1.93 m2)。
  • Abstract
    Currently, in the numerical simulation research on the release laws of top coal during fully mechanized mining, complex coupling algorithms are required to address the continuity-discontinuity issues of top coal movement and ensure precise interaction of coal-rock interface information. However, the conveying process of scraper conveyors is typically neglected in these simulations. To address this problem, a meshless numerical computation model was constructed based on smoothed particle hydrodynamics (SPH). The discrete equations of SPH, derived from the control equations of continuous medium mechanics, were established. An elastic-plastic soil constitutive model along with the Drucker-Prager yield criterion were introduced to achieve dynamic simulation of the caving, movement, and release processes of the top coal. Considering the actual coal release and conveying processes in the mining area, a scraper conveyor model was constructed to simulate the release of top coal and the conveying of bottom coal along the working face, obtaining the variations in coal-rock interface and coal flow velocity at different scraper conveyor operating speeds (0-1.5 m/s). The simulation results indicated that the elastic-plastic soil constitutive model effectively simulated the flow behavior of particles. By setting parameters such as friction angle and elastic modulus, the issue of uncertain parameters commonly found in traditional discrete element models was avoided. After stabilization of the coal flow velocity, the stress distribution of the top coal near the coal drawing outlet exhibited a "double peak" pattern. The operating speed of the scraper conveyor significantly impacted the coal drawing time, while its effect on the coal-rock interface at termination and the shape of the released body was minimal. When multiple supports released coal simultaneously, the conveying capacity of the scraper conveyor needed to be considered, as interference in bottom coal transportation between different supports could lead to blockage effects at the release port. The "gangue closing" rule resulted in variations in the amount of coal drawing at different coal drawing outlets, with the standard deviation of top coal drawing amount from 40 coal drawing outlets (7.52 m²) being greater than that of automatic coal drawing (1.93 m²).
  • 关键词

    综放开采光滑粒子法散煤颗粒放煤−输送耦合煤岩界面煤流速度

  • KeyWords

    fully mechanized top coal caving;smoothed particle method;loose coal particles;coal drawing-conveying coupling;coal-rock interface;coal flow velocity

  • 基金项目(Foundation)
    国家自然科学基金重点资助项目 (52234005)。
  • DOI
  • 引用格式
    刘波,张强,刘洋,等. 基于光滑粒子动力学顶煤放落与输送过程仿真研究[J]. 工矿自动化,2024,50(9):47-58.
  • Citation
    LIU Bo, ZHANG Qiang, LIU Yang, et al. Simulation study of top coal caving and conveying process based on smoothed particle hydrodynamics[J]. Journal of Mine Automation,2024,50(9):47-58.
  • 相关专题
  • 图表
    •  
    •  
    • SPH计算域离散化及粒子支持域

    图(14) / 表(2)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联