• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于三维全参数反演的煤矿采空区形变提取方法研究
  • Title

    Research on deformation extraction method of coal mine goaf based on three-dimensional and full parameter inversion

  • 作者

    刘晖李梅袁明泽姜展王金正吴小虎

  • Author

    LIU Hui;LI Mei;YUAN Mingze;JIANG Zhan;WANG Jinzheng;WU Xiaohu

  • 单位

    南京信息工程大学 遥感与测绘工程学院南京信大安全应急管理研究院有限公司北京大学 地球与空间科学学院 遥感与地理信息系统研究所中国人民解放军95806部队山东能源鲁西矿业郭屯煤矿山东高等技术研究院

  • Organization
    School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology
    Nanjing Xinda Safety Emergency Management Research Institute Co., LTD
    Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University
    People's Liberation Army of China, Unit 95806
    Shandong Energy Group Luxi Mining Co., Ltd.
    Shandong Institute of Advanced Technology
  • 摘要

    准确提取地表形变信息对于预防和控制煤矿开采导致的地质灾害至关重要。以山东郭屯煤矿某工作面为例,首先获取了工作面开采时间段内(2017年7月31日至2018年5月3日)的18景Sentinel-1A卫星影像,基于SBAS-InSAR技术处理得到工作面采空区地表形变。在InSAR观测数据的驱动下,通过推导概率积分法与SBAS-InSAR视线向形变三维参数之间的函数映射关系,提出了一种基于随机误差消除遗传算法的三维全参数反演模型。基于该方法,准确反演了研究区地表沉降参数,通过与现场经验值对比,各参数的偏差均小于3%,拟合精度较高。最后,基于反演参数与概率积分法获得了采空区全盆地沉降形变信息,其中A测线与F测线的均方根误差分别为0.083 m和0.102 m,平均绝对误差分别为0.068 m和 0.089 m,预计结果与实测水准测量数据高度一致,表明所提出的三维全参数反演模型能够以低成本的方式有效获取煤矿采空区全盆地沉降信息。

  • Abstract

    Accurately extracting surface deformation is essential for the prevention and control of geological hazards caused by underground coal mining. By taking a working face in Guotun Coal Mine, Shandong Province, as the case study, this paper first obtains 18 Sentinel-1A satellite images during the extraction period of the working face (July 31, 2017, to May 3, 2018), and derives the surface deformation of the goaf area based on SBAS-InSAR technology. Then, driven by InSAR observations, the functional projection relationships for the three-dimensional parameters between the probability integration method (PIM) and line-of-sight (LOS) deformation derived by SBAS-InSAR are deduced, and a three-dimensional and full-parameter inversion model based on genetic algorithm with random error elimination (GAREE) is proposed. Based on this model, the subsidence parameters inside the study area are accurately retrieved with the deviation for each parameter less than 3% compared with the empirical parameters. Finally, by using the retrieved parameters, PIM is employed to predict the whole goad deformation with the predicted results highly consistent with the field leveling data. The root mean square errors (RMSE) on observation line A and line F are 0.083 m and 0.102 m, respectively, and the mean absolute errors (MAE) are 0.068 m and 0.089 m, respectively. Results show that the parameter inversion model proposed by this study can effectively obtain the subsidence information for the whole basin of a mining goaf in a low-cost way, providing scientific and significant importance for engineering application and potential disaster predictions in coal mining areas.

  • 关键词

    采空区沉降概率积分法SBAS-InSAR随机误差消除三维全参数反演

  • KeyWords

    goaf deformation;probability integral method;SBAS-InSAR;random error elimination;3D full-parameter inversion

  • 基金项目(Foundation)
    国家自然科学青年基金资助项目(52104158)
  • DOI
  • 引用格式
    刘 晖,李 梅,袁明泽,等. 基于三维全参数反演的煤矿采空区形变提取方法研究[J]. 煤炭科学技术,2024,52(S1):22−29.
  • Citation
    LIU Hui,LI Mei,YUAN Mingze,et al. Research on deformation extraction method of coal mine goaf based on three-dimensional and full parameter inversion[J]. Coal Science and Technology,2024,52(S1):22−29.
  • 相关文章
  • 图表
    •  
    •  
    • InSRA视线向形变与地表真实三维形变的投影关系

    图(10) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联