Intelligent prediction of the time series and grade of rock burst in steeply inclined ultra-thick coal seam excavation roadway
崔峰宗程来兴平何仕凤张随林贾冲
CUI Feng;ZONG Cheng;LAI Xingping;HE Shifeng;ZHANG Suilin;JIA Chong
西安科技大学 能源学院西安科技大学 教育部西部矿井开采及灾害防治重点实验室自然资源部煤炭资源勘查与综合利用重点实验室
实现煤矿冲击地压智能预警对于保障矿井安全作业具有重要意义。以新疆某矿急倾斜巨厚煤层的掘进巷道冲击地压发生时序智能分级预测作为背景,分析了急倾斜巨厚煤层巷道掘进期间各微震信息指标的时空演化规律,利用遗传算法(Genetic Algorithm,GA)优化的随机森林(Random Forest,RF)对预测冲击发展趋势性能较高的多项指标进行了优选,基于相空间重构技术(Phase Space Reconstruction,PSR)将数据映射至高维空间进行重构,结合长短期记忆神经网络(Long Short-Term Memory,LSTM)训练学习高维度数据特征,构建了基于深度学习与多元混沌时序的急倾斜巨厚煤层冲击地压预测模型(PSR-LSTM),依据现场实际对模型的预测性能进行了评价。结果表明:急倾斜巨厚煤层巷道掘进下各微震信息指标对冲击预警的敏感性较强,彼此之间具有显著的相关性;优选出了预测冲击发展趋势性能较高的6项微震信息指标;多项指标的时间序列具有混沌特性,经过相空间重构后再进行LSTM学习训练,可有效增强模型的数据利用率与预测精度,所构建的PSR-LSTM模型在指定预测时长为1 d的情况下,预测准确率可达0.913 5、
Realizing the intelligent warning of rock burst in coal mine is of great significance to ensure the safety of mine operation. Based on the intelligent classification prediction of rock burst occurrence time series in roadway of steeply inclined ultra-thick coal seam in a mine in Xinjiang, the spatio-temporal evolution of each microseismic information index during roadway excavation was analyzed. The Random Forest optimized by Genetic Algorithm (GA) was used. RF selects a number of indicators with high performance in predicting the development trend of impact. Based on the Phase Space Reconstruction (PSR) technology, the data is mapped to the high-dimensional space for reconstruction. LSTM is trained to learn the characteristics of high dimensional data, and a prediction model of steeply inclined ultra-thick coal seam rock burst (PSR-LSTM) based on deep learning and multiple chaotic time series is constructed. The results show that each microseismic information index is sensitive to shock warning and has significant correlation with each other. Six microseismic information indexes with high performance in predicting the development trend of shock are selected. The time series of multiple indicators has chaotic characteristics. After phase space reconstruction, LSTM learning and training can effectively enhance the data utilization rate and prediction accuracy of the model. When the prediction time of the constructed PSR-LSTM model is specified as 1 day, the prediction accuracy can reach
急倾斜巨厚煤层掘进巷道冲击地压多元混沌时序相空间重构深度学习
steeply inclined ultra-thick coal seam;excavation roadway;rock burst;multivariate chaotic time series;phase space reconstruction;deep learning
图(0) / 表(5)
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会