-
Title
A classification method of vitrinite for coal macerals based on the PCA and RBF-SVM
-
作者
王培珍殷子睆王高张代林
-
Author
WANG Pei-zhen1,3 ,YIN Zi-huan1 ,WANG Gao1 ,ZHANG Dai-lin2
-
单位
安徽工业大学电气与信息工程学院安徽工业大学 冶金减排与资源综合利用教育部重点实验室安徽工业大学 煤的洁净转化与综合利用安徽省重点实验室
-
Organization
1. School of Electrical and Information Engineering,Anhui University of Technology,Maanshan 243002,China; 2. Anhui Key Laboratory of Clean Conver- sion and Utlization,Anhui University of Technology,Maanshan 243002,China; 3. Key Laboratory of Metallurgical Emission Recycling,Ministry of Education, Anhui University of Technology,Maanshan 243002,China
-
摘要
在分析煤岩镜质组显微组分特点的基础上,针对其结构复杂、特征量多且相互交织从而影响分类准确性等问题,提出一种基于主成分分析(PCA)的煤岩显微组分镜质组分类方法。首先根据镜质组显微图像中各组分呈现的条状、团块、颗粒等纹理特点和亮度差异,采用基于灰度共生矩阵的能量、熵、惯性矩、局部平稳性等纹理特征量和基于灰度分布统计的亮度比、均值、均方差、三阶矩偏度等亮度相关特征量对其进行描述,构成初始特征量集;再采用主成分分析法对初始特征量集进行进一步的抽取;最后构建基于径向基函数的支持向量机(RBF-SVM),采用积累贡献率较大的主成分作为分类参量实现镜质组的自动分类。实验结果表明:纹理和灰度统计特征可有效刻画煤岩镜质组显微组分;采用PCA对初始特征进行抽取之后,用于分类的特征空间维数大幅度降低,分类算法的泛化能力增强,分类的准确率显著提高。
-
Abstract
On the basis of analyzing the characteristics of macerals in vitrinite of coal,in view of the fact that the struc- tures of macerals are very complex and there are too many features that mix and makes classification difficult,a macer- al classification method based on principal component analysis ( PCA) is proposed. Firstly,according to the texture characteristics (strip,crumb,grain,etc) and intensity difference,macerals are represented with texture related features as energy,entropy,moment,local smooth based on gray level co-occurrence matrix and intensity related features as contrast,mean,standard deviation,3-order moment deviation based on the gray-level statistics of coal microscopic ima- ges,and a primary feature set is generated. Then,by using PCA,primary features are further selected and extracted. Fi- nally,a Support Vector Machine based on radial basis function (RBF-SVM) is built,and macerals are classified ac- cording to those principal components with greater cumulative contribution. Experimental results show that texture can present macerals feature of vitrinite effectively;with features extracted by PCA,the dimensions of feature space are greatly reduced,the generalization ability of classification algorithm is improved,and the accuracy rate of classification is obviously increased.
-
关键词
煤显微组分主成分分析支持向量机镜质组分类
-
KeyWords
coal;maceral;principal component analysis;Support Vector Machine;vitrinite;classification
-
基金项目(Foundation)
国家自然科学基金资助项目(51574004);安徽省自然科学基金资助项目(1208085ME67);
-
DOI
-
Citation
Wang Peizhen,Yin Zihuan,Wang Gao,et al. A classification method of vitrinite for coal macerals based on the PCA and RBF-SVM[J]. Journal of China Coal Society,2017,42(4):977-984.
-
相关文章