摘要
为准确预测瓦斯涌出量,提出人工鱼群算法(AFSA)优化极限学习机(ELM)的瓦斯涌出量AFSA-ELM预测模型.该模型采用AFSA对ELM中的输入连接权值和隐含层阈值进行优化选取,为提高模型泛化能力,以训练样本的10次10折交叉验证的均方根误差的平均值作为AFSA目标函数的适应度值.利用18组煤矿实测数据进行试验.研究结果表明:AFSA实现了对ELM性能的优化,AFSA-ELM预测模型对样本的拟合度高,且具有较高的预测精度和泛化能力,即AFSA-ELM预测模型可以有效地实现对矿井瓦斯涌出量的预测.