摘要
针对传统图像识别算法过程繁琐、特征提取困难等问题,提出一种基于深度特征学习的图像自适应目标识别算法。首先对每层网络单个特征图的输入进行批量归一化(BN)处理,其次采用参数化线性修正单元PReLU对参数进行自适应调节,比较BN算法作用在激活函数前后输出的表现性能,构建自适应卷积神经网络模型CNN-BN-PReLU.实验从网络层数、卷积核数目、网络优化及经典卷积神经网络模型4个方面进行比较分析,结果表明,在DDSM数据集上,CNN-BNPReLU较优化前准确率提高了8.5%,训练时间大幅减少71.83%,其敏感度、特异度及AUC值均有显著提升,分别达到了96%,87%和0.91,识别效果远高于LeNet-5和AlexNet,具有较好的应用价值。