摘要
研究具有形状记忆合金(SMA)纤维的复合材料梁非线性静变形、热屈曲和振动。采用Euler-Bernoulli梁理论、Timoshenko梁理论和Reddy高阶理论进行结构建模;根据Von-Kármán应变场理论描述梁的几何非线性;采用Brinson热力学本构方程计算SMA纤维的受限回复特性;基于Hamilton原理导出梁的非线性偏微分控制方程;采用Galerkin法导出两端简支对称铺层SMA纤维复合材料梁的非线性静变形、热屈曲和振动近似解。通过数值计算揭示SMA纤维含量、激励温度和初始应变对非线性静变形、热屈曲和振动的影响规律。研究表明,当长厚比较大时,剪切变形的影响很小,上述理论均可适用;但长厚比较小时,Euler-Bernoulli和Timoshenko梁理论的结果与Reddy高阶理论的结果相差较大,剪切变形的影响是显著的。