• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
煤层底板水害三维监测与智能预警系统研究
  • Title

    Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor

  • 作者

    靳德武赵春虎段建华乔伟鲁晶津李鹏周振方李德山

  • Author

    JIN Dewu1,2 ,ZHAO Chunhu1,2 ,DUAN Jianhua1 ,QIAO Wei1,2,3 ,LU Jingjin1 ,LI Peng1 ,ZHOU Zhenfang1,2 ,LI Deshan1

  • 单位

    中煤科工集团西安研究院有限公司陕西省煤矿水害防治技术重点实验室,陕西西北工业大学 计算机学院

  • Organization
    1. Xi’an Research Institute of China Coal Technology & Engineering Group Corp. ,Xi’ an  710054,China; 2. Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard,Xi’an  710077,China; 3. School of Computer Science and Engineering,Northwestern Polytechnical Universi-ty,Xi’an  710072,China
  • 摘要

    针对华北型煤田煤层底板突水监测点覆盖不全、智能化水平不高等问题,以底板“下三带”理论为基础,提出集多频连续电法充水水源监测、“井-地-孔”联合微震采动底板破坏带监测以及监测大数据智能预警为一体的煤层底板突水三维监测与智能预警技术思路。 

    其中多频连续电法监测系统以伪随机多频序列为人工场源,利用伪随机相关辨识技术提取强噪声背景中的弱信号,采用拟高斯-牛顿法对预处理数据进行三维电阻率反演,实现对煤层底板充水水源变化过程的自动化三维监测;“井-地-孔”联合微震监测系统主要通过研制带推靠的孔中传感器及回收装置,实现微震传感器“井-地-孔”三维立体布署,采用井下有线( IEEE1588)和地面无线(GPS)时钟同步方式解决地面与井下采集设备的时钟同步问题,建立起“井-地-孔”监测数据的实时传输网络,基于偏振分析联合反演的三分量定位算法,实现采动底板破坏深度时空精细定位与实时监测;智能预警系统利用时序大数据挖掘技术与计算机深度学习技术对电法、微震多元时序监测数据进行分析和处理,采用指标预警和模型预警方法对监测数据空间展布和预警级别以三视热力图形式输出,实时显示煤层底板各网格的预警等级,从而形成煤矿底板水害三维监测与智能预警技术体系。 

    最后,以葛泉矿东井 11916 采煤工作面为应用对象,采用多频连续电法监测系统、“井-地-孔”联合微震监测系统,以及基于时空监测数据的智能预警系统对煤层底板岩溶水害进行三维监测与智能预警,为我国华北型煤田煤层底板水害监测预警提供了新的技术与装备支撑。


  • Abstract

    Aiming at the problems of incomplete coverage of monitoring points and low intelligent level of karst water disaster of coal mining in Northern China-Type coalfields,on the basis of the theory of “Down Three Zones”,a comprehensive monitoring and early-warning technical method was proposed,which is composed of the multi-frequency continuous electricity method monitoring source of water-inflow, and “ tunnel-ground-borehole” joint micro-seismic technology monitoring of water filling channel during mining,and the intelligent early warning technology of water dis- aster based on monitoring data. Among them,the multi frequency continuous electrical method monitoring system takes the pseudo-random multi-frequency series as the artificial field source,uses the multi-frequency series and other detec- tion technologies to extract the weak signal in the strong noise background,and uses the quasi Gauss-Newton method to carry on the full space three-dimensional resistivity inversion to the pre-processing data,so as to realize the automation and three-dimensional monitoring of change process of the water inflow. The “roadway-ground-borehole” joint micro- seismic monitoring system is mainly based on the three-dimensional deployment of sensors and recovery devices in the borehole,the underground wired (IEEE1588) and ground wireless (GPS) time synchronization method is used to re- alize the synchronization of ground and underground data collection time,then the real-time transmission network of monitoring data is established,and the three-component positioning calculation based on polarization analysis joint in- version is carried out. The method realizes the accurate location of the fracture position of the water conducted chan- nel,solves the problems of the precise location and the real-time monitoring of the water inrush channel. The intelligent early warning system uses the time series big data mining technology and the computer deep learning technology to an- alyze and process the massive monitoring data from electricity and micro-seismic,and uses the index early warning and the model early warning method to predict the spatial distribution of the monitoring data and the real-time danger lev- el. Finally,the paper took the 11916 coal face of the Gequan coal mine as the application site,and adopted multi-fre- quency continuous electrical monitoring system,“ roadway-ground-borehole” combined micro-seismic monitoring sys- tem and intelligent early warning system to carry out three-dimensional monitoring and intelligent early warning for the karst water damage in the coal seam floor. The study results provides a technical and equipment support for the monito- ring and early warning of coal seam floor water hazard.

  • 关键词

    底板水害连续电法微震深度学习智能预警

  • KeyWords

    floor water hazard;continuous electrical method;microseism;deep learning;intelligent early warning

  • DOI
  • Citation
    JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256 -2264.
  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • 多频连续电法监测系统

    图(14) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联