• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于小波散射分解变换的煤矿微震信号智能识别
  • Title

    Intelligent recognition of coal mine microseismic signal based on wavelet scattering decomposition transform

  • 作者

    樊鑫程建远王云宏栗升段建华王盼

  • Author

    FAN Xin,CHENG Jianyuan,WANG Yunhong,LI Sheng,DUAN Jianhua,WANG Pan

  • 单位

    西安科技大学 地质与环境学院中国煤炭科工集团 西安研究院有限公司

  • Organization
    1.College of Geology and Environment,Xi’an University of Science and Technology,Xi’an710054,China,2.Xi’an Research Institute,China Coal Technology and Engineering Group,Xi’an710077,China
  • 摘要

    微震信号是一种典型的时变非平稳信号微震监测系统在高噪声环境下采集信号的信噪比 偏低影响了微震事件的识别准确率和精度现有的微震事件识别方法仍然存在低速率高时延低 精度等问题。 以小波理论为基础提出利用小波散射分解变换提取微震事件和噪声信号的特征计 算 类信号的特征系数并构成相应的特征矩阵;基于微震信号低频特性不可预知性和突发瞬态 性的特点对比分析了小波散射分解变换结构的主要参数:时不变尺度散射分解次数和质量因子 对特征矩阵维数的影响;通过调整参数的大小有效控制特征矩阵维数提高运算效率最终选择出 最优的特征矩阵利用 SVM 分类对 360 组煤矿微震信号进行分类识别。 实验结果表明:小波散 射系数构成的特征矩阵可以有效区分微震事件信号与噪声信号且事件信号特征系数变化趋势具 有突变性噪声信号特征系数变化趋势表现为无序性;采用 次小波散射分解变换构成的特征 矩阵可有效表征微震事件信号与噪声信号的差异特征提高程序运算效率而随着变换次数增加, 事件信号的低频部分更明显;在时不变尺度和变换次数确定的情况下为得到最优特征矩阵各 阶小波散射变换的质量因子选择不宜过大


  • Abstract

    Microseismic signal is a typical timevarying nonstationary signal,while the collected data are often disturbed by strong noise,seriously affecting the recognition efficiency of microseismic events and the accuracy of source location. Existing traditional recognition methods still have problems with a low rate,high delay and low accuracy. Therefore,based on wavelet theory,the wavelet scattering decomposition transformation method is proposed to analyze and extract the features of microseismic events and noise events signals,calculate the feature coefficients of the two signals,and form the corresponding feature matrix. Based on the characteristics of lowbandwidth,unpredictability and burst transient of microseismic signals,the effects of timeinvariant scale,the number of scattering decomposition and quality factors on the dimension of the feature matrix are compared and analyzed by processing the real data. By adjusting the size of the parameters,the dimension of the feature matrix is effectively controlled to improve the operation efficiency. Finally,the optimal feature matrix is selected for the training of the machine learning classification model. The experimental results show that the feature matrix composed of the wavelet scattering coefficients can effectively distinguish the event signals from the noise signals,and the feature coefficients change trend of the event signals is mutant,and the noise signals feature coefficients change trend appears as a disorder. The feature matrix composed of three times wavelet scattering decomposition transformation can effectively represent the different characteristics of microseismic event signals and noise signals and improve programming efficiency,and the lowfrequency part of event signal is more obvious with the number of transformations increasing. In the case where the timeinvariant scale and the number of transformations are determined,in order to obtain the optimal feature matrix,the quality factor selection of the wavelet scattering transformation of each order should not be too large. 

  • 关键词

    微震监测小波散射分解信号分析特征提取智能识别

  • KeyWords

    microseismic monitoring,wavelet scattering decomposition,signal analysis,feature extraction,intelligent recognition

  • 引用格式
    樊鑫,程建远,王云宏,等. 基于小波散射分解变换的煤矿微震信号智能识别[J]. 煤炭学报,2022,47(7):2722-2731.
  • Citation
    FAN Xin,CHENG Jianyuan,WANG Yunhong,et al.Intelligent recognition of coal mine microseismic signal based on wavelet scattering decomposition transform[J]. Journal of China Coal Society,2022,47(7):2722-2731.
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联