• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于GAF和DenseNet的滚动轴承故障诊断方法
  • 作者

    姜家国郭曼利杨思国

  • 单位

    滁州职业技术学院电气工程学院国网安徽省电力有限公司蚌埠供电公司

  • 摘要

    基于模型和基于信号的滚动轴承故障诊断方法存在建模困难、信号分析较繁琐等问题;基于数据驱动的滚动轴承故障诊断方法多采用卷积神经网络,但网络训练时随着网络层数增多会出现梯度消失问题,且将滚动轴承振动信号直接作为网络输入会造成特征提取不全。针对上述问题,提出了一种基于格拉姆角场(GAF)与密集连接卷积网络(DenseNet)的滚动轴承故障诊断方法。将滚动轴承振动信号一维时间序列通过GAF转换为二维图像,保留了时间序列数据之间的相关信息;将二维图像作为DenseNet的输入,通过DenseNet对二维图像进行特征提取,提升了特征信息利用率,进而实现故障分类。采用凯斯西储大学轴承数据集上的数据进行实验,结果表明,该方法能有效识别滚动轴承故障类型,故障诊断准确率达99.75%。为进一步证明该方法的优越性,选取灰度图+DenseNet、GAF+残差网络(ResNet)、灰度图+ResNet故障诊断方法进行对比,结果表明:GAF+DenseNet方法准确率最高,灰度图+ResNet方法准确率最低;经过GAF转换的二维图像与灰度图相比,保留了原始时间序列数据之间的相关信息;与ResNet相比,DenseNet由于采取更加密集的连接方式,能够更充分地提取故障特征。

  • 关键词

    矿用机械滚动轴承故障诊断格拉姆角场密集连接卷积网络

  • 引用格式
    姜家国,郭曼利,杨思国.基于GAF和DenseNet的滚动轴承故障诊断方法[J].工矿自动化,2021,47(8):84-89.
  • 相关文章
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联