• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于激光惯性融合的煤矿井下移动机器人SLAM 算法
  • Title

    LiDAR-Inertial SLAM for mobile robot in underground coal mine

  • 作者

    杨林马宏伟王岩

  • Author

    YANG Lin,MA Hongwei,WANG Yan

  • 单位

    西安科技大学 机械工程学院陕西省矿山机电装备智能监测重点实验室

  • Organization
    School of Mechanical Engineering, Xi ’ an University of Science and Technology; Shaanxi Key Laboratory for Intelligent Monitoring of Mine Mechanical and Electrical Equipment
  • 摘要

    煤矿巷道采掘工作面等作业区域具有典型的半结构化或非结构化环境特征且 GPS 无法 在煤矿井下直接应用亟需构建适用于煤矿井下移动机器人的自主定位系统方案解决机器人精确 定位状态估计等问题。 针对上述问题提出了一种基于激光惯性的融合 SLAM 算法实现了移动 机器人在煤矿井下实时输出稳健的 6DOF 状态估计和全局一致的同步定位与地图构建。 该算法由 前端迭代卡尔曼滤波和后端位姿图优化 部分组成。 该方法首先在前端将传感器数据经过预处 理构建了观测模型和预测模型建立了迭代卡尔曼滤波器结合机器人先验位姿经过预测和观测 的状态传播过程使其状态更新后的后验位姿更加准确如此循环迭代得到了基于紧耦合的激光惯 性里程计增强了机器人在这种非结构环境下的鲁棒性。 其次在后端部署了关键帧的选取策略, 以限制状态估计的数量满足其在大尺度场景下实时性的要求。 同时在优化框架中添加了地面约 束和回环检测优化了相邻关键帧之间的相对位姿以确保全局地图的一致性从而进一步提高了 机器人 6DOF 状态估计的整体精度。 最后分别在公开数据集和自采数据集上验证了该算法的性 能。 实验结果表明:针对煤矿井下这种特殊的非结构环境与现有的激光 SLAM 算法相比提出的 算法使机器人具有更高的精度实时性和鲁棒性有效降低了系统的累积误差保证了所构建地图 的全局一致性


  • Abstract

    The operation areas such as coal mine roadway and mining working face have some typical semi⁃structured or unstructured environment characteristics, and GPS cannot be directly applied in underground coal mines. Therefore, there is an urgent need to build an autonomous positioning system for coal mine mobile robot to solve the problems of its precise positioning and state estimation in underground coal mine. To solve these problems, a LiDAR⁃ Inertial SLAM algorithm is proposed to achieve a real⁃time output of robust six degrees of freedom (6DOF) state esti⁃ mation and globally consistent simultaneous localization and mapping (SLAM) for robot in underground coal mines. It consists of two parts: front end iterative Kalman filtering and back end pose graph optimization. Firstly, on the frontend, an iterative Kalman filter is established to construct a tightly coupled based LiDAR⁃Inertial Odometry (LIO). The state propagation process for the a priori position and attitude of a robot, which uses predictions and observations, increases the accuracy of the attitude and enhances the system robustness. Secondly, on the back end, the key frame selection strategy is deployed to meet the real⁃time requirements for large⁃scale scenes. Moreover, loop detection and ground constraints are added to the optimization framework, thereby further improving the overall accuracy of the 6DOF state estimation. Finally, the performance of the algorithm is verified using a public dataset and the dataset col⁃ lected. The experimental results show that for the special environment of underground coal mine, compared with the existing LiDAR⁃SLAM algorithm, the proposed algorithm makes the robot have higher accuracy, real⁃time performance and robustness, effectively reducing the cumulative error of the system and ensuring the global consistency of the con⁃ structed maps.


  • 关键词

    移动机器人激光雷达惯性导航状态估计同步定位与地图构建煤矿

  • KeyWords

    mobile robot;LiDAR;IMU;state estimation;SLAM;coal mine

  • 引用格式
    杨林,马宏伟,王岩.基于激光惯性融合的煤矿井下移动机器人 SLAM 算法[J].煤炭学报,2022,47(9):3523-3534.
  • Citation
    YANG Lin,MA Hongwei,WANG Yan.LiDAR-Inertial SLAM for mobile robot in underground coal mine[J]. Journal of China Coal Society,2022,47(9):3523-3534.
  • 相关文章
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联