• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
煤体中瓦斯水合固化的力学作用研究进展
  • Title

    Progress in the mechanical effects of gas solidification by hydrate in coal

  • 作者

    吴强张保勇

  • Author

    WU Qiang;ZHANG Baoyong

  • 单位

    黑龙江科技大学安全工程学院

  • Organization
    School of Safety Engineering, Heilongjiang University of Science & Technology
  • 摘要

    为更好地完善我国煤与瓦斯突出预测与防治方法,基于煤与瓦斯突出综合作用假说,提出了瓦斯水合固化防治煤与瓦斯突出的方法。该方法核心是将煤层中瓦斯固化生成瓦斯水合物,不仅能降低瓦斯压力,而且能够提高煤体强度,以达到减弱或消除煤与瓦斯突出危险性的目的。实现了煤体中瓦斯水合物的生成以及含瓦斯水合物煤体力学性质−渗透率原位测试,提出了煤体中瓦斯水合物生成及力学性质−渗透率测试技术及含瓦斯水合物煤体三轴压缩数值建模技术。瓦斯水合固化热力学和动力学条件是防突的理论基础,煤层瓦斯水合物稳定储存是技术前提,瓦斯压力降低及煤体力学性质改善是防突关键,重点围绕水合固化煤体交叉力学问题进行总结。分析认为:① 瓦斯水合固化防突技术理论框架已经初步形成,并利用数值模拟手段初步探究了瓦斯水合固化对煤体力学特征改善的细观机理;② 现阶段已证实煤体中水合物生成不仅能降低瓦斯压力,而且能改善其力学性质,高饱和度对提高煤体峰值强度明显;③ 瓦斯水合物生成经历快速、缓慢和稳定3个阶段,且水合物的生成会造成煤体中瓦斯渗流通道阻塞,导致其渗透率降低;④ 高瓦斯压力、高CH4体积分数不仅有助于提高水合物饱和度而且会延缓水合物分解,有助于水合物的稳定存在。需要注意的是,瓦斯水合固化技术防突的可靠度仍需大量重复试验验证,以建立普适化的数据库。综合现有研究结果,对水合固化防突研究目前仍存在的局限性与挑战进行了讨论,并且给出了进一步的研究方向。

  • Abstract

    Aiming at the real problems such as the occurrence of coal and gas outburst and based on the hypothesis of comprehensive action of coal and gas outburst, a method of gas hydration and solidification to prevent coal and gas outburst is proposed. The core of this method is to solidify the gas in coal seam to form gas hydrate, which can not only reduce the gas pressure, but also improve the coal strength, so as to reduce or eliminate the risk of coal and gas outburst. Based on the idea of “coal and gas outburst prevention using hydrate”, the test of gas hydrate formation in coal and the in-situ test of the mechanical property-permeability of gas hydrate bearing coal have been performed, with the numerical modeling technique of the triaxial compression of the gas hydrate bearing coal proposed. The techniques are implemented by comprehensively applying the methods of theoretical analysis, development of testing equipment, indoor test and numerical analysis. In terms of coal and gas outburst prevention, the thermodynamic and kinetic conditions of gas hydrate formation are its theoretical basis, the stable storage of gas hydrate is its technical precondition, and the reduction of gas pressure and the improvement of mechanical properties are its key measures. This paper focuses on the cross mechanics related to the gas hydrate bearing coal. The results show that: ① the theoretical framework of gas solidification technology by the hydrate method for outburst prevention has been initially formed, and the meso-mechanism of improving the mechanical characteristics of coal before and after gas hydration has been preliminarily explored by means of the numerical simulation. ② At present, it has been confirmed that the hydrate formation in coal can not only reduce the gas pressure, but also improve its mechanical properties. High saturation can obviously improve the peak strength of coal. ③ Gas hydrate formation experiences three stages: rapid, slow and stable stage. Additionally, the formation of hydrate will cause the gas seepage channel in the coal to be blocked, resulting in a decrease in its permeability. ④ High gas pressure and high CH4 concentration not only help to increase the saturation but also delay hydrate decomposition, which is conducive to the stable existence of the hydrate. However, a large number of repetitive experiments are still needed to verify the reliability of the method to build up a generalized database. By analyzing current research findings, the limitations and challenges that still exist are discussed, with further research interests pointed out.

  • 关键词

    煤与瓦斯突出瓦斯水合固化含瓦斯水合物煤体力学性质离散元

  • KeyWords

    coal and gas outburst;gas solidification by the hydrate method;gas hydrate bearing coal;mechanical behavior;discrete element method

  • 基金项目(Foundation)
    国家自然科学基金资助项目(U21A20111, 51974112, 51674108)
  • DOI
  • 引用格式
    吴强,张保勇. 煤体中瓦斯水合固化的力学作用研究进展[J]. 煤炭学报,2024,49(2):720−738.
  • Citation
    WU Qiang,ZHANG Baoyong. Progress in the mechanical effects of gas solidification by hydrate in coal[J]. Journal of China Coal Society,2024,49(2):720−738.
  • 相关文章
  • 图表
    瓦斯水合固化防突技术思路示意(修改自文献[9])
    瓦斯水合固化防突技术思路示意(修改自文献[9])
    瓦斯水合物实物及空间结构示意
    瓦斯水合物实物及空间结构示意
    瓦斯水合物相平衡曲线[20]
    瓦斯水合物相平衡曲线[20]
    不同饱和度下煤体中瓦斯水合物分布模式
    不同饱和度下煤体中瓦斯水合物分布模式
    水合物在煤孔裂隙中的微观分布模式[20]
    水合物在煤孔裂隙中的微观分布模式[20]
    试样的孔径分布[24]
    试样的孔径分布[24]
    煤体中水合物生成、分解过程压力−温度−时间曲线
    煤体中水合物生成、分解过程压力−温度−时间曲线
    围压12 MPa下煤体中水合物生成过程压力−温度−时间曲线
    围压12 MPa下煤体中水合物生成过程压力−温度−时间曲线
    围压20 MPa下煤体中水合物生成过程气体消耗量−时间曲线[29]
    围压20 MPa下煤体中水合物生成过程气体消耗量−时间曲线[29]
    含瓦斯煤体/含瓦斯水合物煤体的峰值强度
    含瓦斯煤体/含瓦斯水合物煤体的峰值强度
    突出煤体中瓦斯水合固化阻抗特性监测实验装置[36]
    突出煤体中瓦斯水合固化阻抗特性监测实验装置[36]
    初始压力与诱导时间关系[36]
    初始压力与诱导时间关系[36]
    煤体中瓦斯水合物平均生长速率/饱和度与初始压力关系曲线[36]
    煤体中瓦斯水合物平均生长速率/饱和度与初始压力关系曲线[36]
    含瓦斯水合物煤体力学性质原位测试装置[37]
    含瓦斯水合物煤体力学性质原位测试装置[37]
    七星矿型煤峰值强度与水合物饱和度的关系[38]
    七星矿型煤峰值强度与水合物饱和度的关系[38]
    桃山煤矿型煤峰值强度与水合物饱和度的关系[39]
    桃山煤矿型煤峰值强度与水合物饱和度的关系[39]
    七星矿型煤峰值强度与围压的关系[38]
    七星矿型煤峰值强度与围压的关系[38]
    桃山煤矿型煤峰值强度与围压的关系[39]
    桃山煤矿型煤峰值强度与围压的关系[39]
    不同围压下试样变形破坏[38]
    不同围压下试样变形破坏[38]
    应力−渗流−化学耦合作用含瓦斯水合物煤体三轴试验系统[20]
    应力−渗流−化学耦合作用含瓦斯水合物煤体三轴试验系统[20]
    煤体轴向应力−应变曲线[29]
    煤体轴向应力−应变曲线[29]
    应力平台持续时间变化规律[29]
    应力平台持续时间变化规律[29]
    卸围压条件下含瓦斯水合物煤体破坏照片[29]
    卸围压条件下含瓦斯水合物煤体破坏照片[29]
    煤体中水合物分布模式
    煤体中水合物分布模式
    含瓦斯水合物煤体三轴压缩试验模拟
    含瓦斯水合物煤体三轴压缩试验模拟
    应力−应变曲线及试样破坏模式[46]
    应力−应变曲线及试样破坏模式[46]
    不同饱和度下含瓦斯水合物煤体接触个数、接触力、配位数以及孔隙率与轴向应变的关系[46]
    不同饱和度下含瓦斯水合物煤体接触个数、接触力、配位数以及孔隙率与轴向应变的关系[46]
    瓦斯水合物生成前后煤体渗透率对比[37]
    瓦斯水合物生成前后煤体渗透率对比[37]
    试验结果与预测渗透率对比(修改自文献[37])
    试验结果与预测渗透率对比(修改自文献[37])
    煤体渗透率与瓦斯压力拟合关系[51]
    煤体渗透率与瓦斯压力拟合关系[51]
    渗透率变化率、瓦斯压力敏感系数随瓦斯压力变化关系[51]
    渗透率变化率、瓦斯压力敏感系数随瓦斯压力变化关系[51]
    滑脱因子变化规律[51]
    滑脱因子变化规律[51]
    滑脱效应影响率变化规律[51]
    滑脱效应影响率变化规律[51]
    煤体渗透率随有效应力变化规律[20]
    煤体渗透率随有效应力变化规律[20]
    煤体渗透率损失率、损伤率与有效应力的关系[20]
    煤体渗透率损失率、损伤率与有效应力的关系[20]

    Table1

    甲烷水合物在纯水中形成的温压条件[10]
    温度/℃ 0 5.0 10.0 20.0
    压力/MPa 2.55 4.24 6.95 21.28

    Table2

    煤层中水合物存在可能性研究相关文献
    时间作者部分结论
    1981MAKOGON YF[14]国内外最早提出煤层中可能存在水合物
    2021VIKTOR V. Nikitin等[15]由于适合的温压条件及水和甲烷的丰富性,煤层中可能存在水合物
    1992俞启香[16]煤层瓦斯气体可能以瓦斯水合物晶体存在
    2006吴强等[17]在中高纬度矿区的煤层中有瓦斯水合物自然存在的可能
    2006于洪观等[18]煤层中存在着甲烷水合物形成的物质、储存和温压条件,可能存在水合物
    2008李祥春等[19]吨煤瓦斯突出量高出吨煤瓦斯含量很多,为煤层中甲烷水合物的存在提供佐证

    Table3

    煤体中水合物固化前后瓦斯压力理论值
    编号 煤体瓦斯
    体积/m3
    孔隙率\( \varphi \)/
    %
    不可解吸量/
    m3
    固化前破碎
    后压力P1/MPa
    饱和度
    Sh/%
    固化瓦斯
    体积/m3
    固化后破碎
    后压力P2/MPa
    瓦斯压力降
    低率/%
    1 8 10 0.8 0.79 20 3.28 0.43 45.57
    20 6.56 0.07 91.14
    2 10 10 1.0 0.98 20 3.28 0.62 36.73
    20 6.56 0.27 72.45
    3 15 10 1.5 1.47 40 6.56 0.76 48.30
    20 13.12 0.04 97.28
    4 20 10 2.0 1.97 40 6.56 0.76 61.42
    20 13.12 0.53 73.10
    5 25 10 2.5 2.46 60 9.84 1.38 43.90
    20 19.68 0.31 87.40
    6 30 10 3.0 2.95 60 9.84 1.87 36.61
    20 19.68 0.80 72.88
    7 40 10 4.0 3.93 80 13.12 2.60 33.84
    20 26.24 1.07 72.77
    8 45 10 4.5 4.42 80 13.12 2.99 32.35
    20 26.24 1.56 64.71

    Table4

    瓦斯气样组分[36]
    瓦斯气样 瓦斯气样组分
    G1 φ(CH4)=99.99%
    G2 φ(CH4)=85%、φ(CO2)=8%、φ(N2)=5.6%、φ(O2)=1.4%
    G3 φ(CH4)=80%、φ(CO2)=8%、φ(N2)=9.6%、φ(O2)=2.4%
    G4 φ(CH4)=75%、φ(CO2)=8%、φ(N2)=13.6%、φ(O2)=3.4%

    Table5

    试验公式信息汇总
    编号 指标 计算方法 参数
    1 渗透率[47] \( {k}{=}\dfrac{{2}{\mu}{{P}}_{{0}}{LQ}}{{A}{{(}{P}}_{{1}}^{{2}}{–}{{P}}_{{2}}^{{2}}{)}} \) μ为测量温度下气体黏度系数;P0为大气压力;P1为进气压力;P2为出气压力;L为试样长度;A为试样横截面面积;Q为瓦斯流量
    2 渗透率变化率[48] \( {{B}}_{{{\mathrm{P}}}}{=}\dfrac{{{k}}_{{1}}{–}{{k}}_{{{\mathrm{m}}}}}{{{k}}_{{1}}} \) k1为第1个瓦斯压力下的渗透率;km为瓦斯压力变化过程的渗透率
    3 瓦斯压力敏感系数[48] \( {{C}}_{{{\mathrm{P}}}}=-\dfrac{{1}}{{{k}}_{{1}}}\dfrac{{\partial k}}{{{\partial P}}_{{{\mathrm{m}}}}} \) k1为第1个瓦斯压力下的渗透率;\( {\partial k} \)为煤体渗透率变化量;\( {{\partial P}}_{{\mathrm{m}}} \)为瓦斯压力变化量
    4 滑脱效应影响率[49] \( {{M}}_{{{\mathrm{k}}}}{=}\dfrac{{k}{–}{{k}}_{{0}}}{{k}} \) k为试验渗透率;k0为绝对渗透率
    5 渗透率损失率[50] \( {{L}}_{{k}}{=}\dfrac{{{k}}_{{0}}{–}{{k}}_{{1}}}{{{k}}_{{0}}} \) \( {{k}}_{{0}} \)为初始渗透率;k1为应力加载至第1个应力点对应的渗透率
    6 渗透率损伤率[50] \( {{D}}_{{k}{1}}{=}\dfrac{{{k}}_{{1}}{–}{{k}}_{{1}{x}}}{{{k}}_{{1}}} \) k1为加载过程第1个应力点对应的渗透率;k1x为卸载过程应力恢复至第1个应力点对应的渗透率
     注:变量含义仅适用于对应公式。

    Table6

    煤体渗透率经验公式[51]
    拟合类型 拟合参数 拟合度R2
    指数函数 \( {k}={153.82{\mathrm{exp}}(- 4.10}{{P}}_{\text{m}}{)+2.79} \) 0.99
    幂函数 \( {k}={4.38}{{P}}_{\text{m}}^{{0.69}} \) 0.87
    二次函数 \( {k}={2.20}{{{P}}_{\text{m}}^{{2}}{-8.47}{P}}_{\text{m}}{+10.92} \) 0.95

    Table7

    轴向应力加卸载过程含瓦斯水合物煤体渗透率与有效应力的拟合公式[20]
    应力路径 拟合类型 拟合公式 拟合度R2
    轴向应力
    加载过程
    指数函数 \( {k}{=2.56}{{\mathrm{exp}}(}{-}{{\sigma }}_{{{\mathrm{e}}}}{/39.52)}{-}{1.45} \) 0.99
    幂函数 \( {k}{=}{4.25}{\sigma }_{{{\mathrm{e}}}}^{{–0.90}} \) 0.98
    二次函数 \( {k}{=}{6.32}{\sigma }_{{{\mathrm{e}}}}^{{2}}–{{0.06}\times {{10}}^{{-}{4}}{\sigma}}_{{{\mathrm{e}}}}{+1.10} \) 0.99
    轴向应力
    卸载过程
    指数函数 \( {k}{=}{1.43}\times {{10}}^{{5}}{\mathrm{exp}}(-{{\sigma}}_{{{\mathrm{e}}}}{/0.54)+0.45} \) 0.91
    幂函数 \( {k}{=}{0.91}{\sigma }_{{{\mathrm{e}}}}^{{–0.30}} \) 0.76
    二次函数 \( {k}{=}{0.01}{\sigma }_{{{\mathrm{e}}}}^{{2}}{–}{{0.10}{\sigma}}_{{{\mathrm{e}}}}{+1.03} \) 0.82
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联