• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
加卸载条件下含瓦斯水合物煤体应变及渗透率试验研究
  • Title

    Strain and permeability of gas hydrate bearing coal under loading and unloading condition

  • 作者

    张保勇赵国建高霞吴强

  • Author

    ZHANG Baoyong;ZHAO Guojian;GAO Xia;WU Qiang

  • 单位

    黑龙江科技大学 安全工程学院黑龙江科技大学 建筑工程学院

  • Organization
    School of Safety Engineering, Heilongjiang University of Science & Technology
    School of Architecture & Civil Engineering, Heilongjiang University of Science & Technology
  • 摘要

    为探究瓦斯水合固化及加卸载条件下含瓦斯水合物煤体应变及渗透率变化规律,采用自主设计的应力–渗流–化学耦合作用煤体三轴试验装置,测量瓦斯水合物生成前后煤体渗透率及升轴压卸围压条件下煤体(3种粒径:0.425~0.850(20~40目)、0.250~0.425(40~60目)、0.180~0.250 mm(60~80目);3种饱和度:40%、60%、80%)应变及渗透率,获取加卸载条件下应力–应变曲线确定煤体变形特征,分析瓦斯水合物生成、水合物饱和度及偏应力对煤体渗透率的影响规律,通过渗透率损失率、变形角公式对煤体渗透率影响程度、体积膨胀效应进行量化表征,基于渗透率模型初步探讨水合物分布模式对煤体渗透率的影响机制。研究表明:① 饱和度对煤体渗透率变化规律影响较为复杂,总体而言,随着饱和度增加,渗透率降低百分比越大,堵塞程度越显著。瓦斯水合物生成后,煤体渗透率明显降低,降低幅度为58.3%~83.3%(20~40目)、61.5%~95.0%(40~60目)、81.8%~90.9%(60~80目),随着饱和度增加,煤体渗透率整体呈降低趋势,下降幅度为55.6%~86.1%。② 煤体轴向应变随着时间增加呈现出稳定增大、缓慢增大和快速增大3个阶段,煤体渗透率与应变具有一定相关性,并随着偏应力增加呈二项式函数增大、先减小后增大、先增大后减小3种趋势,二项式函数可较好预测采掘应力扰动下瓦斯水合固化后煤体渗透率变化规律。③ 引入渗透率损失率,在相同水合物饱和度下,随着偏应力增加,煤体渗透率损失率整体呈增大趋势。④ 引入体积膨胀变形角,在相同偏应力差下,随着饱和度增加,煤体体积膨胀变形角由19.0°~63.9°降至0.2°~38.2°,说明水合物饱和度越低,煤体体积膨胀效应越显著。

  • Abstract

    In order to explore the effect of hydrate formation and loading-unloading condition on the strain and permeability of gas hydrate bearing coal, the authors first measured the permeability of coal before and after gas hydrate formation, by using the triaxial testing machine for coupling action of stress, seepage, and chemical effect, as well as measured the strain and permeability of coal (three particle sizes: 0.425−0.850 mm (20−40 mesh), 0.250−0.425 mm (40−60 mesh), 0.180−0.250 mm (60−80 mesh) and three saturations: 40%, 60%, 80%) under the axial loading and confining unloading conditions. Then, the stress-strain curve was used to determine the deformation characteristic of coal during under loading and unloading conditions, the effect of hydrate formation, hydrate saturation and deviator stress on the coal permeability, the extend of coal permeability and volume expansion effect were quantitatively characterized by permeability loss rate formula and deformation angle formula. Furthermore, the influence mechanism of hydrate distribution mode was preliminarily discussed on the coal permeability with the theoretical permeability models. The results show that ① the influence of saturation on the variation law of coal permeability is more complicated. In general, with the increase of hydrate saturation, the greater the percentage of permeability reduction, the more significant the degree of blockage. The coal permeability obviously reduces after the formation of gas hydrate, with the range of reductions being 58.3%−83.3% (20−40 mesh), 61.5%−95.0% (40−60 mesh) and 81.8%−90.9% (60−80 mesh). The coal permeability decreases with the increase of hydrate saturation with a reduction between 55.6% and 86.1%. ② The axial strains of the coal exhibit three-stage process, including stability increasing, slowly increasing, and rapidly increasing with the increase of time. There is a certain correlation between the permeability and the strain of coal, and the permeability varies with the increase of deviator stress, in terms of quadratically increasing, decreasing and first increasing and then decreasing, the quadratic function can better predict the permeability variation law of gas hydrate bearing coal under mining stress disturbance. ③ Introducing the permeability loss rate, the permeability loss rate increases with the increase of the deviator stress applied on the coal under the condition of the same hydrate saturation. ④ Introducing the expansion deformation angle, the coal expansion deformation angle decreases from 19.0°−63.9° to 0.2°−38.2° with the increase of hydrate saturation under the condition of the same deviator stress, which indicates that the lower the hydrate saturation, the more significant effect of the coal expansion.

  • 关键词

    煤与瓦斯突出含瓦斯水合物煤体加卸载应变渗透率

  • KeyWords

    coal and gas outburst;gas hydrate bearing coal;loading-unloading condition;strain;permeability

  • 基金项目(Foundation)
    国家自然科学基金联合基金资助项目(U21A20111);国家自然科学基金面上资助项目(51974112)
  • DOI
  • 引用格式
    张保勇,赵国建,高霞,等. 加卸载条件下含瓦斯水合物煤体应变及渗透率试验研究[J]. 煤炭学报,2024,49(3):1414−1431.
  • Citation
    ZHANG Baoyong,ZHAO Guojian,GAO Xia,et al. Strain and permeability of gas hydrate bearing coal under loading and unloading condition[J]. Journal of China Coal Society,2024,49(3):1414−1431.
  • 相关文章
  • 图表
    加卸载条件下试验测试过程示意
    加卸载条件下试验测试过程示意
    试样安装步骤
    试样安装步骤
    试验过程应力−渗透率随时间变化曲线
    试验过程应力−渗透率随时间变化曲线
    不同粒径下瓦斯水合物生成前后煤体渗透率
    不同粒径下瓦斯水合物生成前后煤体渗透率
    不同粒径和水合物饱和度下煤体渗透率降低百分比
    不同粒径和水合物饱和度下煤体渗透率降低百分比
    含瓦斯水合物煤体轴压、围压、轴向应变随时间变化情况
    含瓦斯水合物煤体轴压、围压、轴向应变随时间变化情况
    含瓦斯水合物煤体渗透率与偏应力的变化关系
    含瓦斯水合物煤体渗透率与偏应力的变化关系
    含瓦斯水合物煤体渗透率、应变与偏应力的变化关系
    含瓦斯水合物煤体渗透率、应变与偏应力的变化关系
    不同粒径和水合物饱和度下含瓦斯水合物煤体渗透率损失率
    不同粒径和水合物饱和度下含瓦斯水合物煤体渗透率损失率
    不同粒径和水合物饱和度下含瓦斯水合物煤体体积膨胀变形角
    不同粒径和水合物饱和度下含瓦斯水合物煤体体积膨胀变形角
    不同粒径下归一化渗透率随饱和度的变化规律
    不同粒径下归一化渗透率随饱和度的变化规律
    加卸载条件下含瓦斯水合物煤体应力路径
    加卸载条件下含瓦斯水合物煤体应力路径
    轴向应力加卸载条件下含瓦斯水合物煤体渗透率随有效应力变化规律(改自文献[44])
    轴向应力加卸载条件下含瓦斯水合物煤体渗透率随有效应力变化规律(改自文献[44])
    升轴压卸围压条件下含瓦斯水合物煤体渗透率随偏应力变化规律
    升轴压卸围压条件下含瓦斯水合物煤体渗透率随偏应力变化规律

    Table1

    试样基本参数
    粒径/目饱和度/%高度/mm直径/mm质量/g含水量/g
    20~4080101.5850.54256.7312.52
    60100.6350.51254.149.14
    40100.8450.38251.216.21
    40~608098.7850.50243.938.93
    6099.9850.61244.616.61
    4099.2150.39242.314.31
    60~8080102.2150.60247.989.98
    6099.7050.40241.148.14
    4099.2750.40238.945.94

    Table2

    加卸载条件下含瓦斯水合物煤体渗流试验方案
    应力路径 σ1/MPa σ3/MPa P1/MPa P2/MPa (σ1σ3)/MPa
    升轴压
    卸围压
    12.0 12.0 4.5 3.5 0
    12.5 11.5 4.5 3.5 1
    13.0 11.0 4.5 3.5 2
    13.5 10.5 4.5 3.5 3
    14.0 10.0 4.5 3.5 4
    14.5 9.5 4.5 3.5 5
    15.0 9.0 4.5 3.5 6
    15.5 8.5 4.5 3.5 7
    16.0 8.0 4.5 3.5 8

    Table3

    含瓦斯水合物煤体渗透率与偏应力的3种数学公式拟合参数
    粒径/目 饱和度/% 指数函数拟合 二项式函数拟合 幂函数拟合
    A1 t1 y R2 B2 B1 c R2 a b R2
    20~40 40 0.43 2.38 0.15 0.89 0.01 −0.14 0.58 0.93 0.52 −0.59 0.91
    60 0.24 −4.82 −0.12 0.99 0.01 0.02 0.14 0.99 0.08 1.26 0.98
    80 0.05 1.83 0.15 0.97 1.78×10−3 −0.02 0.20 0.95 0.18 −0.09 0.90
    40~60 40 0.03 −5.26 0.29 0.91 1.10×10−3 2.73×10−3 0.31 0.91 0.31 0.09 0.68
    60 −3.31×10−4 −1.05 0.62 0.47 −0.02 0.12 0.50 0.86 0.66 −0.12 0.17
    80 0.28 1.59 0.15 0.96 0.01 −0.09 0.15 0.94 0.29 −0.36 0.84
    60~80 40 −0.27 6.91 0.49 0.99 −1.62×10−3 0.04 0.22 0.99 0.25 0.22 0.95
    60 −0.27 20.11 0.36 0.99 −2.68×10−4 0.01 0.10 0.99 0.10 0.26 0.97
    80 −11.24 105.95 12.19 0.99 −4.77×10−4 −0.11 0.95 0.99 1.00 0.24 0.94

    Table4

    含瓦斯水合物煤体渗透率与体积应变关系拟合参数
    粒径/目 饱和度/% C2 C1 d R2
    20~40 40 2.45 2.07 0.54 0.82
    60 −0.18 −0.28 0.01 0.98
    80 3.70 0.83 0.20 0.91
    40~60 40 −0.10 −0.23 0.33 0.98
    60 −17.20 −3.54 0.50 0.58
    80 40.24 6.28 0.40 0.92
    60~80 40 −3.88 −1.66 0.24 0.95
    60 −2.87 −0.90 −0.11 0.96
    80 7.71 −0.56 0.11 0.89

    Table5

    含瓦斯水合物煤体体积膨胀变形角计算结果
    粒径/目 饱和度/% \( {\Delta }{{ \varepsilon }}_{{V}} \)/% \( {\Delta }{{ \varepsilon }}_{{1}} \)/% β/(°)
    20~40 40 0.68 0.53 52.2
    60 0.58 0.70 39.7
    80 0.12 0.15 38.2
    40~60 40 0.42 0.20 63.9
    60 0.05 0.07 33.3
    80 0.20×10−2 0.56 0.2
    60~80 40 0.12 0.36 19.0
    60 0.07 0.24 16.8
    80 0.52×10−2 0.26 1.1

    Table6

    渗透率理论模型相关信息
    名称 理论模型表达式 相关参数及类型
    KLEINBERG模型[56] \( {{K}}_{{{\mathrm{r}}}}{=}\dfrac{{{K}}_{{1}}}{{{K}}_{{0}}}{=}{{(1}{-}{{S}}_{{{\mathrm{h}}}}{)}}^{{2}} \) 胶结型
    \( {{K}}_{{{\mathrm{r}}}}{=}\dfrac{{{K}}_{{1}}}{{{K}}_{{0}}}{=1}{-}{{S}}_{{{\mathrm{h}}}}^{{2}}{+}\dfrac{{{2(}{{1}{-}{S}}_{{{\mathrm{h}}}}{)}}^{{2}}}{{{\mathrm{ln}}}{{S}}_{{{\mathrm{h}}}}} \) 孔隙填充型
    KOZENY模型[56] \( {{K}}_{{{\mathrm{r}}}}{=}\dfrac{{{K}}_{{1}}}{{{K}}_{{0}}}{=}{{(1}{-}{{S}}_{{{\mathrm{h}}}}{)}}^{{n}{+1}} \) 胶结型:
    n=1.5(0 < Sh < 80%)
    \( {{K}}_{{{\mathrm{r}}}}{=}\dfrac{{{K}}_{{1}}}{{{K}}_{{0}}}{=}\dfrac{{{(}{{1}{-}{S}}_{{{\mathrm{h}}}}{)}}^{{n}{+2}}}{{{(1+}\sqrt{{{S}}_{{{\mathrm{h}}}}}{)}}^{{2}}} \) 孔隙填充型:
    n=1.5(0 < Sh < 80%)
    DAI模型[57] \( {{K}}_{{{\mathrm{r}}}}{=}\dfrac{{{K}}_{{1}}}{{{K}}_{{0}}}{=}\dfrac{{{(}{{1}{-}{S}}_{{{\mathrm{h}}}}{)}}^{{3}}}{{{(1+0.197}{{S}}_{{{\mathrm{h}}}}{)}}^{{2}}} \) 胶结型
    \( {{K}}_{{{\mathrm{r}}}}{=}\dfrac{{{K}}_{{1}}}{{{K}}_{{0}}}{=}\dfrac{{{(}{{1}{-}{S}}_{{{\mathrm{h}}}}{)}}^{{3}}}{{{(1+1.946}{{S}}_{{{\mathrm{h}}}}{)}}^{{2}}} \) 孔隙填充型
      注:Kr为归一化渗透率;n为拟合参数;Sh为饱和度。

    Table7

    预测水合物分布模式
    相关渗透率理论模型 分布模式示意 目数 饱和度
    DAI孔隙填充型
    孔隙填充型
    20~40目60%
    DAI胶结型
    胶结型
    40~60目60%
    60~80目40%
    60%
    KLEINBERG胶结型40~60目80%
    60~80目80%
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联