• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
煤层群采动下围岩应力演化规律及协同控制技术研究
  • Title

    Study on the stress evolution law of surrounding rock and cooperative control technology in coal seam group mining

  • 作者

    吴少康张俊文徐佑林宋治祥张杨范文兵董续凯张际涛陈志松

  • Author

    WU Shaokang;ZHANG Junwen;XU Youlin;SONG Zhixiang;ZHANG Yang;FAN Wenbing;DONG Xukai;ZHANG Jitao;CHEN Zhisong

  • 单位

    中国矿业大学(北京)能源与矿业学院贵州理工学院 矿业工程学院贵州黔诚力锦科技有限公司湖南科技大学 资源环境与安全工程学院贵州大学 矿业学院

  • Organization
    School of Energy and Mining, China University of Mining and Technology -Beijing
    School of Mining Engineering, Guizhou Institute of Technology
    Guizhou Qianchenglijin Technology Co., Ltd.
    School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology
    School of Mining, Guizhou University
  • 摘要

    针对煤层群开采过程中巷道支护困难问题,以贵州土城矿212回风石门为工程背景。综合采用现场调研、数值模拟、相似模拟及现场试验等手段,揭示了212回风石门应力演化规律,并提出了“卸−转−固”协同控制技术。研究结果表明:212回风石门遭受破坏的主要原因是煤层群采动过程中存在的地质力学问题导致了围岩失稳。巷道底板及两帮在采动过程中产生不同程度的应力集中。当遭受垂直应力挤压时,巷道底部承受的挤压力较大,而顶部围岩承受的拉伸力较大,由于力学不平衡导致围岩的破坏。基于此提出了“卸−转−固”协同控制技术。通过爆破卸压的方式,利用爆破产生的冲击波引起围岩的震动和应力波动,使表层围岩中原本集中的应力分散到更深的围岩区域,降低表层围岩的应力集中程度。同时,利用爆轰和封孔工艺进一步加固卸压孔周围的围岩,形成两个承载结构。即由巷道支护体形成的内承载体和由深部围岩形成的外承载体。两者相互作用有效承受巷道浅部及深部围岩的应力,并转移到支护结构,起到保护和稳定围岩的作用。利用该技术在212回风石门现场试验,结果显示:使用该技术区域应力长期趋于稳定甚至缓慢降低,巷道顶底板及两帮移近速率分别降低了74.49%及47.67%,底鼓量降低了77.2%。而未使用该技术区域应力出现不同程度的上升,表面位移收敛严重。由此可得,围岩控制效果显著。该技术已成功推广到贵州其他不同地质环境的煤矿,均取得了显著效果。

  • Abstract

    Aiming at addressing the challenges encountered in roadway support during coal seam group mining, this project focuses on the 212 main return-air cross-cut in Tucheng Mine, Guizhou Province. Through field investigation, numerical simulation, analog simulation, and field tests, the study reveals the stress evolution pattern of the 212 main return-air cross-cut and proposes the collaborative control technology of "unloading-rotating-fixing". The findings indicate that the main cause of failure in the 212 main return-air cross-cut is the instability of the surrounding rock resulting from geomechanical issues during coal seam group mining. The floor and two sides of roadway produce different degree of stress concentration during mining. When the tunnel experiences vertical stress compression, the compressive force at the tunnel’s bottom is greater and the tensile force in the surrounding rock at the top is larger, leading to failure of the surrounding rock due to mechanical imbalance. Consequently, the “unloading-rotating-fixing” cooperative control technology is proposed. The shock waves generated by blasting induce vibration and stress fluctuations in the surrounding rock, dispersing the initially concentrated stress in the surface rock to deeper areas and reducing the stress concentration levels on the surface. Additionally, the surrounding rock around pressure relief holes is further reinforced using blasting and sealing techniques to form two load-bearing structures: the inner carrier composed of the roadway support system and the outer carrier formed by the deep surrounding rock. The interaction between these two components enables them to effectively withstand the stress from both shallow and deep surrounding rock of the roadway, transferring it to the supporting structure and playing a crucial role in protecting and stabilizing the surrounding rock. This technology was utilized during the field test at the 212 main return-air cross-cut with great success. The results demonstrate that the stress levels in the area tend to remain stable or even slightly decrease over time. The convergence speed of the roof, floor, and sides of the roadway is reduced by 74.49% and 47.67%, respectively, while the floor heave volume is decreased by 77.2%. However, in areas where this technique is not applied, the stress levels increase to varying degrees, leading to significant surface displacement convergence. It can be concluded that the control effect on surrounding rock is remarkable. This technology has been successfully implemented in other coal mines located in diverse geological environments in Guizhou Province, yielding remarkable outcomes.

  • 关键词

    煤层群采动应力底鼓巷道支护“卸−转−固”协同控制技术

  • KeyWords

    coal seam group;mining stress;bottom drum;roadway support;collaborative control technology of “unloading-rotating-fixing”

  • 基金项目(Foundation)
    国家自然科学基金资助项目(52034009,51974319);越崎杰出学者资助项目(2020JCB01)
  • DOI
  • 引用格式
    吴少康,张俊文,徐佑林,等. 煤层群采动下围岩应力演化规律及协同控制技术研究[J]. 煤炭科学技术,2024,52(3):24−37.
  • Citation
    WU Shaokang,ZHANG Junwen,XU Youlin,et al. Study on the stress evolution law of surrounding rock and cooperative control technology in coal seam group mining[J]. Coal Science and Technology,2024,52(3):24−37.
  • 相关文章
  • 图表

    Table1

    数值模拟力学参数
    岩性 弹性模量/GPa 剪切模量/GPa 黏聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 密度/(kg·m−3
    1.66 1.25 1.32 25 1.50 1500
    泥岩 3.73 2.24 2.37 27 3.36 2315
    粉砂质泥岩 5.21 3.32 3.12 30 4.52 2400
    泥质粉砂岩 5.92 4.09 4.05 30 5.38 2550

    Table2

    煤岩层覆岩力学性能参数
    编号 岩性 厚度/m 弹性模量/GPa 密度/(t·m−3 抗压强度/MPa 黏聚力/MPa 内摩擦角/(°)
    1 10煤 1.1 13.0 1.5 18.3 1.54 30.0
    2 泥质粉砂岩 4.0 17.6 1.9 34.9 12.60 39.0
    3 细砂岩 19.6 19.2 2.4 50.0 4.50 40.0
    4 2.7 13.0 1.5 18.3 1.54 30.0
    5 泥岩 2.5 10.8 1.7 25.7 1.60 38.5
    6 12煤 2.8 13.0 1.5 18.3 1.54 30.0
    7 泥岩 13.0 10.8 1.7 25.7 1.60 38.5
    8 13-2煤 3.0 13.0 1.5 18.3 1.54 30.0
    9 泥质粉砂岩 1.0 17.6 1.9 34.9 12.6 39.0
    10 粉砂质泥岩 4.5 15.5 2.5 23.0 3.50 32.0
    11 15煤 2.0 13.0 1.5 18.3 1.54 30.0
    12 下三角 4.5 17.6 1.9 34.9 12.6 39.0

    Table3

    物理模拟配比
    编号 岩性 材料质量/kg
    砂子 碳酸钙 石膏
    1 10煤 1.1 2.97 0.21 0.21
    2 泥质粉砂岩 4.0 10.80 1.80 1.80
    3 细砂岩 19.6 52.92 12.35 5.29
    4 2.7 7.29 0.52 0.52
    5 泥岩 2.5 6.75 0.84 0.84
    6 12煤 2.8 7.56 0.54 0.54
    7 泥岩 13.0 35.1 4.39 4.39
    8 13-2煤 3.0 8.10 0.58 0.58
    9 泥质粉砂岩 1.0 2.70 0.45 0.45
    10 粉砂质泥岩 4.5 12.15 1.22 0.52
    11 15煤 2.0 5.40 0.39 0.39
    12 下三角 4.5 12.15 2.03 2.03
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联