• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
煤储层酸化氧化试剂体系优选及增产效果评价
  • Title

    Acidification oxidation reagent system optimization on coal seams and stimulation effect evaluation

  • 作者

    石军太范倩雯曹运兴徐凤银黄红星刘高峰刘成李星浩曹敬添邓婷王春琦孙政李相方

  • Author

    SHI Juntai;FAN Qianwen;CAO Yunxing;XU Fengyin;HUANG Hongxing;LIU Gaofeng;LIU Cheng;LI Xinghao;CAO Jingtian;DENG Ting;WANG Chunqi;SUN Zheng;LI Xiangfang

  • 单位

    中国石油大学(北京)油气资源与工程全国重点实验室中国石油大学(北京)煤层气研究中心河南省非常规能源与开发国际联合实验室中国石油学会中石油煤层气有限责任公司中联煤层气国家工程研究中心有限责任公司河南理工大学 资源环境学院中国石油天然气股份有限公司 浙江油田分公司中国矿业大学 煤炭精细勘探与智能开发全国重点实验室

  • Organization
    State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing)
    Coalbed Methane Research Center, China University of Petroleum (Beijing)
    Henan International Joint Laboratory for Unconventional Energy Geology and Development
    Chinese Petroleum Society
    PetroChina Coalbed Methane Company Limited
    China United Coalbed Methane National Engineering Research Center Co., Ltd.
    School of Resources and Environment, Henan Polytechnic University
    PetroChina Zhejiang Oil field Company Limited
    State Key Laboratory of Coal Fine Exploration and Intelligent Mining, China University of Mining and Technology
  • 摘要

    我国煤层气资源丰富,但煤储层多为低渗致密储层,单井产量和采出率普遍较低,现有的技术手段难以支撑我国煤层气产业的快速发展,需要探索提高单井产量和采出率的手段。除了水力压裂、裸眼洞穴完井的物理改造方式,采用化学法改造原始煤储层物性也是近年研究的热点。煤储层酸化氧化技术可以避免物理增产方式造成的储层伤害,并可以促进解吸并改善渗流能力,但对于不同煤阶煤储层,适宜不同煤阶煤储层的酸化氧化试剂需要优化,以及其酸化氧化的作用效果需要评价。通过室内实验,对比分析了保德、沐爱、新疆区块煤样物性特征,包括煤阶、煤体结构、煤的宏观特征、煤质特征、孔渗参数、元素分析、矿物组成方面的区别;通过煤粉酸液前置溶蚀实验,优选出了盐酸最佳浓度,并通过Design-Expert软件设计并开展了五因素三水平的酸液优选正交实验,找出了影响溶蚀效果的敏感因素,优选出了最优的氧化剂类型,并对保德、沐爱、新疆区块煤样,分别优选出了适用于各区块煤储层的酸化氧化试剂体系;应用优选出的各区块酸化氧化试剂体系,对保德、沐爱、新疆区块煤样,分别对比分析了酸化氧化前后的孔隙度、渗透率和润湿性;最后基于沐爱区块一个典型井组,通过数值模拟预测了酸化氧化改造后的产气效果。实验表明:盐酸浓度在3~4 mol/L内,酸液溶蚀效果最好;5个实验因素的影响效果从大到小依次是浸泡时间、酸液种类、浸泡温度、煤样种类、酸液浓度;最优的氧化剂为质量分数3%的过氧化氢溶液;保德区块混合酸化氧化剂配方为10%HCl+2%CH3COOH+2%HF+3%H2O2,沐爱区块的最佳混合酸化氧化剂配方为8%HCl+ 2%CH3COOH+ 4%HF+ 3%H2O2,新疆区块的最佳混合酸化氧化剂配方为12%HCl+1%CH3COOH+1%HF+3%H2O2,煤阶越高,最优酸化氧化试剂体系中HF含量越高。酸化和氧化对煤样的孔隙度和渗透率有提升作用,2者增大规律一致,低阶煤提升效果优于高阶煤。酸化作用使煤的亲水性增强,而氧化作用使煤的亲水性大幅减弱,经优选的酸化氧化体系处理的煤样亲水性减弱。数值模拟预测表明酸化氧化方案生产10 a达到废弃条件时采出率达到了64.64%,与同一时间未进行酸化氧化方案的采出程度相比增加19.72%,增产效果显著;与未进行酸化氧化方案生产18 a达到废弃条件时采出率相比增加0.97%,但酸化氧化措施节省了8 a生产时间达到最终采出率,降低了矿场运营成本。优选出的适宜于低、中、高不同煤阶煤层气藏的酸化氧化体系,改善了目标煤储层的解吸和渗流能力,提高了单井产量和采出率。

  • Abstract

    China has abundant coalbed methane (CBM) resources, and most of them are low-permeability and tight reservoirs, with generally low production rate and small recovery factor. Existing technologies face great challenges to meet the demand on CBM in China. It is desirable to develop new methods to improve the production rate and enhance recovery factor. In addition to physical stimulation methods such as hydraulic fracturing and open-hole cave completion, the use of chemical methods to improve physical properties of coal reservoirs has also been a hot research topic in recent years. Coal reservoir acidification and oxidation technology can promote desorption of gas and enlarge permeability of reservoir. But for different coal rank coal reservoirs, the acidification and oxidation agents need to be optimized and their performance evaluated. Laboratory experiments are conducted to compare and analyze the physical properties coal samples from Baode, Mu’ai, and Xinjiang blocks, including coal rank, texture, macroscopic characteristics, quality, porosity, permeability, element, and mineral composition. The optimal concentration of hydrochloric acid is determined through pre-dissolution experiment of coal powder in acid solution. Then a five-factor and three-level orthogonal experiment for acid solution optimization is designed and performed by using Design-Expert software, which identifies the sensitive factors affecting the dissolution. For the coal samples in Baode, Mu’ai, and Xinjiang blocks, the oxidant types and the corresponding acidification and oxidation agent systems are optimized. Applying these acidification and oxidation agent systems to coal samples from Baode, Mu’ai, and Xinjiang blocks, the change of porosity, permeability, and wettability are compared and analyzed. Finally, through numerical simulation, the gas production is predicted for acidification and oxidation in typical well group in Block Mu’ai. Results show that the acid solution has the best dissolution at a concentration of hydrochloric acid of 3 mol/L to 4 mol/L; Top factors played in the experiment are soaking time, acid type, soaking temperature, coal sample type, and acid concentration, in descending order of importance; The optimal oxidant is a hydrogen peroxide solution with a concentration of 3%; the mixed acidification oxidant formula in Baode block is 10% HCl + 2% CH3COOH + 2% HF + 3% H2O2; The optimal mixed acidification oxidant formula in Mu’ai block is 8% HCl + 2% CH3COOH + 4% HF + 3% H2O2; the optimal mixed acidification oxidant formula in Xinjiang block is 12% HCl + 1% CH3COOH + 1% HF + 3% H2O2; The higher the coal rank, the greater the HF content in the optimal acidification oxidant system. Both acidification and oxidation improve the porosity and permeability of coal samples to some extent, and the improvement in low-rank coal is more significant than that in high-rank coal. Acidification and oxidation have different effects on the wettability of coal: Acidification increases the hydrophilicity of coal, whereas oxidation reduce the hydrophilicity of coal; and the hydrophilicity of coal samples treated by the optimized acidification and oxidation system is weakened. Reservoir simulation results show that acidification and oxidation lead to a recovery factor of 64.64% after 10 years of production, which is 19.72% higher than that without acidification and oxidation. The advantage of acidification and oxidation is 0.97% after 18 years of production. However, the acidification and oxidation saved 8 years of production time to achieve a close final recovery factor, which greatly reduces the operating costs. The optimized acidizing oxidation agent systems for CBM reservoirs with low, medium, and high ranks improved the desorption and permeability of the target reservoirs, and increase well production and recovery factor. This research provides technical support for stimulation practices of CBM reservoirs in the aforementioned blocks in China, as well as similar coal reservoirs in the world.

  • 关键词

    煤层气储层改造酸化氧化溶蚀采出率

  • KeyWords

    coalbed methane;formation stimulation;acidification and oxidation;corrosion;recovery factor

  • 基金项目(Foundation)
    国家自然科学基金重点资助项目(42230814);山西省科技重大专项资助项目(20201101002);中国石油大学(北京)优秀青年学者基金资助项目(2462020QNXZ003)
  • DOI
  • 引用格式
    石军太,范倩雯,曹运兴,等. 煤储层酸化氧化试剂体系优选及增产效果评价[J]. 煤炭学报,2024,49(4):1989−2003.
  • Citation
    SHI Juntai,FAN Qianwen,CAO Yunxing,et al. Acidification oxidation reagent system optimization on coal seams and stimulation effect evaluation[J]. Journal of China Coal Society,2024,49(4):1989−2003.
  • 相关文章
  • 图表

    Table1

    煤工业分析
    煤样 灰分 水分 挥发分 固定碳
    保德区块 5.70 24.33 26.20 43.77
    沐爱区块 13.79 1.24 15.26 69.71
    新疆区块 4.00 4.40 32.60 59.00

    Table2

    煤样孔渗参数
    煤样 孔隙度/% 渗透率/10−15 m2
    保德1号 3.22 0.12
    保德2号 4.40 0.14
    保德3号 2.86 0.09
    沐爱1号 3.86 0.02
    沐爱2号 4.36 0.03
    沐爱3号 4.13 0.03
    新疆1号 7.88 0.17
    新疆2号 5.21 0.16
    新疆3号 6.13 0.22

    Table3

    干燥无灰基条件下煤的元素分析
    煤样 Cdaf Hdaf Ndaf Odaf Sdaf
    保德区块 89.09 6.05 2.28 1.72 0.86
    沐爱区块 94.93 2.47 0.26 1.14 1.20
    新疆区块 91.78 5.49 0.56 1.58 0.59

    Table4

    煤样矿物组成
    矿物 矿物质量分数/%
    保德区块 沐爱区块 新疆区块
    铁化物 34.20 3.20 32.20
    石英 18.90 7.64 28.25
    碳酸盐岩 29.81 16.43 27.70
    长石类 4.72 1.91 1.91
    其他 12.37 66.92 1.43

    Table5

    酸化氧化剂体系配方
    方案 HCl CH3COOH HF H2O2
    1 8 0 6 3
    2 8 2 4 3
    3 8 3 3 3
    4 8 4 2 3
    5 8 6 0 3
    6 10 0 4 3
    7 10 2 2 3
    8 10 4 0 3
    9 12 0 2 3
    10 12 1 1 3
    11 12 2 0 3

    Table6

    沐爱区块煤心仅酸化、仅氧化和酸化氧化共同作用3种情况下的润湿角变化
    方式 序号 润湿接触角/(°)
    作用前 作用后
    仅酸化作用 A1 47.2 32.5
    A2 46.7 34.9
    A3 44.8 26.3
    A4 43.2 31.6
    仅氧化作用 B1 41.0 69.3
    B2 44.9 61.5
    B3 34.8 62.2
    B4 40.2 55.1
    酸化氧化共同作用 C1 45.2 58.5
    C2 43.1 64.2
    C3 42.8 55.1
    C4 39.4 68.0

    Table7

    模型储层物性参数
    参数 数值
    初始储层压力/MPa 5.2 ~ 6.3
    煤层厚度/m 8.00 ~ 11.58
    含气量/(m3·t−1) 7.8 ~ 11.3
    煤密度/(t·m−3) 1.3 ~ 1.6
    渗透率/10−15 m2 0.03
    孔隙度/% 0 ~ 5
    含水饱和度/% 1
    临界解吸压力/MPa 5.48 ~ 6.24
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联