• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
承压破碎煤体应变和孔渗演化机制与模型研究
  • Title

    Evolutionary mechanisms and models of strain, porosity, and permeability of compacted broken coals

  • 作者

    李磊卢守青褚廷湘仲晓星刘重阳RENTing

  • Author

    LI Lei;LU Shouqing;CHU Tingxiang;ZHONG Xiaoxing;LIU Chongyang;REN Ting

  • 单位

    华北科技学院 矿山安全学院青岛理工大学 机械与汽车工程学院中国矿业大学 安全工程学院济南热电集团山东济宣能源有限公司澳大利亚伍伦贡大学 土木采矿与环境工程学院

  • Organization
    School of Mine Safety, North China Institute of Science & Technology
    School of Mechanical and Automotive Engineering, Qingdao University of Technology
    School of Safety Engineering, China University of Mining & Technology
    Jinan Thermal Power Group Shandong Jixuan Energy Co., Ltd.
    School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong
  • 摘要

    采空区垮落带遗煤区域作为煤、氧低温反应的主要场所,其应变、孔隙率和渗透率演化模型的研究对深入认识煤自燃发展过程与规律有重要意义。基于团队自主研发的承压破碎煤体气体渗流实验装置,开展了单一粒径与混合粒径煤体承压渗流过程应变、孔隙率和渗透率演化规律研究。对不同粒径下的应变、孔隙率和渗透率随应力变化情况进行分析,结果显示:相关变化过程可以分为2个阶段,即轴向应力≤6 MPa时的线性变化阶段与>6 MPa时的指数函数变化阶段,初步表明破碎煤体的变形、孔隙率和渗透率的变化机制一致、同粒径无关,轴向应力=6 MPa时的状态属于关键节点状态,其对应的应变、孔隙率和渗透率分别承接着各自上下2种不同的变化机制;轴向应力≤6 MPa和>6 MPa条件下三者变化的主要原因分别是颗粒的压缩作用和滑移填充作用;轴向应力=6 MPa时不同粒径破碎煤体承压过程中的应变、孔隙率和渗透率分别同各自的应变、孔隙率、渗透率变化路径有一一映射关系,据此建立了相应的应力−应变、应力−孔隙率和应力−渗透率关系的模型;模型对比、验证结果表明,所建模型虽源于多种粒径破碎煤体实验,但摆脱了粒径因素的影响,同实验结果有着良好的匹配性,达到了较为理想的效果。相关研究成果可为采空区煤自燃早期预防与控制提供科学依据。

  • Abstract

    Residual coal areas in caving zones of goaves in coal mines serve as primary sites for low-temperature reactions between coal and oxygen. Hence, exploring the evolutionary models of the strain, porosity, and permeability of coals in these areas holds great significance for gaining a deep understanding of the spontaneous combustion process and regularity of coals. Based on the self-developed experimental device for gas seepage in compacted broken coals, this study explored the evolutionary patterns of the strain, porosity, and permeability of compacted coals with single/mixed particle sizes during gas seepage. Furthermore, this study analyzed the variations in the strain, porosity, and permeability with stress under different particle sizes. The analysis results show that the variation process can be divided into two stages: the linear variation stage in the case of the axial stress ≤ 6 MPa and the exponential variation stage under the axial stress >6 MPa. The variation process preliminarily indicates that the deformation, porosity, and permeability of compacted broken coals exhibited consistent, particle size-independent variation mechanisms. The axial stress of 6 MPa was proved to be a critical node connecting two different variation mechanisms of strain, porosity, and permeability. Under axial stress ≤ 6 MPa and >6 MPa, the varia-tions in the strain, porosity, and permeability primarily resulted from the compression and slip of coal par-ticles, respectively. In the case of axial stress of 6 MPa, the strain, porosity, and permeability of compacted broken coal with different particle sizes exhibited one-to-one mapping with their variation paths. Accordingly, this study established the stress-strain, stress-porosity, and stress-permeability models. As revealed by the comparison and verification results, the models, despite being derived from experiments of broken coals with various particle sizes, were not influenced by the coal particle sizes and agreed well with the experimental results, yielding satisfactory effects. The results of this study can provide a scientific basis for the early prevention and control of the spontaneous combustion of coals in goaves of coal mines.

  • 关键词

    破碎煤体承压气体渗流应变孔隙率渗透率

  • KeyWords

    broken coal;compacted;gas seepage;strain;porosity;permeability

  • 基金项目(Foundation)
    国家自然科学基金项目(51804176,52274199);山东省自然科学基金项目(ZR2023ME031);中央高校基本科研业务费资助项目(3142024014)
  • DOI
  • 引用格式
    李磊,卢守青,褚廷湘,等. 承压破碎煤体应变和孔渗演化机制与模型研究[J]. 煤田地质与勘探,2024,52(5):37−45. DOI: 10.12363/issn.1001-1986.23.11.0743
  • Citation
    LI Lei,LU Shouqing,CHU Tingxiang,et al. Evolutionary mechanisms and models of strain, porosity, and permeability of compacted broken coals[J]. Coal Geology & Exploration,2024,52(5):37−45. DOI: 10.12363/issn.1001-1986.23.11.0743
  • 相关文章
  • 图表

    Table1

    应力−应变分段拟合参数及相关性系数
    分类粒径范围线性函数阶段指数函数阶段
    AB相关性系数R2y0CR0相关性系数R2
    单一粒径1~3 mm00.0290.9890.30−0.40−0.190.996
    3~6 mm00.0340.9890.32−0.40−0.210.996
    6~10 mm00.0390.9990.33−0.40−0.230.993
    10~15 mm00.0490.9980.39−0.36−0.220.998
    混合粒径1~6 mm00.0350.9970.32−0.36−0.200.996
    1~10 mm00.0420.9960.34−0.35−0.230.992
    1~15 mm00.0480.9520.38−0.33−0.210.998

    Table2

    应力−孔隙率分段拟合参数及相关性系数
    分类粒径范围线性函数阶段指数函数阶段
    AB相关性系数R2y0CR0相关性系数R2
    单一粒径1~3 mm0.56−0.0170.9680.360.29−0.180.993
    3~6 mm0.56−0.0210.9630.330.34−0.220.989
    6~10 mm0.53−0.0240.9990.290.30−0.180.998
    10~15 mm0.51−0.0350.9990.190.37−0.200.995
    混合粒径1~6 mm0.54−0.0220.9820.310.29−0.180.991
    1~10 mm0.51−0.0271.0000.250.32−0.200.991
    1~15 mm0.47−0.0330.9660.170.38−0.220.990

    Table3

    应力−渗透率分段拟合参数及相关性系数
    分类粒径范围线性函数阶段指数函数阶段
    AB相关性系数R2y0CR0相关性系数R2
    单一粒径1~3 mm1.69−0.0640.9671.100.91−0.250.973
    3~6 mm1.59−0.0640.9621.000.75−0.250.989
    6~10 mm1.51−0.0640.9990.970.68−0.250.990
    10~15 mm1.38−0.0640.9980.860.60−0.250.990
    混合粒径1~6 mm1.31−0.0640.9810.780.64−0.250.990
    1~10 mm1.26−0.0641.0000.750.57−0.250.989
    1~15 mm1.14−0.0640.9650.660.43−0.250.993
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联