• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型
  • Title

    Recognition model of miner fatigue degree based on genetic algorithm optimized by least squares support vector machine

  • 作者

    田水承任治鹏毛俊睿

  • Author

    TIAN Shuicheng;REN Zhipeng;MAO Junrui

  • 单位

    西安科技大学 安全科学与工程学院西安科技大学 安全与应急管理研究所

  • Organization
    College of Safety Science and Engineering, Xi'an University of Science and Technology
    Institute of Safety and Emergency Management, Xi'an University of Science and Technology
  • 摘要

    为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA) 优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。

  • Abstract

    In order to accurately identify the fatigue degree of miners and reduce the accidents caused by miners' fatigue, a recognition model of mine fatigue degree based on genetic algorithm (GA) optimized by the least squares support vector machine (LSSVM) was proposed. First, the ECG data of miners were collected through fatigue induction experiments, and Friedman test was used to optimize the characteristic indicators of miners' fatigue degree. Then, the principal component analysis(PCA) was used to reduce the dimension of the selected feature indexes, and the feature parameter set representing the fatigue degree of the miner was established. On this basis, the key parameters of the least squares support vector machine were optimized by genetic algorithm, and the fatigue degree recognition model of miners was constructed. The results show that the selected characteristic indexes of miners' fatigue degree can effectively reflect the miners' fatigue degree. Compared with GA-SVM and LSSVM models, the fusion of GA-LSSVM model can significantly improve the recognition accuracy of miners' fatigue degree (the average recognition accuracy is 96.87%). The fatigue degree recognition model constructed can identify the fatigue degree of miners more efficiently, and has certain practical guiding significance for the prevention and control of coal mine accidents.

  • 关键词

    矿工疲劳识别心电信号最小二乘支持向量机遗传算法

  • KeyWords

    miner;fatigue recognition;electrocardiogram signal;least squares support vector machine;genetic algorithm

  • 基金项目(Foundation)
    国家自然科学基金面上项目(51874237);国家自然科学基金重点项目(U1904210)
  • DOI
  • 引用格式
    田水承, 任治鹏, 毛俊睿. 基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型[J]. 矿业安全与环保, 2024, 51(4): 110-116. DOI: 10.19835/j.issn.1008-4495.20230312
  • Citation
    TIAN Shuicheng, REN Zhipeng, MAO Junrui. Recognition model of miner fatigue degree based on genetic algorithm optimized by least squares support vector machine[J]. Mining Safety & Environmental Protection, 2024, 51(4): 110-116. DOI: 10.19835/j.issn.1008-4495.20230312
  • 相关文章
  • 图表
    •  
    •  
    • 疲劳诱发试验流程图

    图(6) / 表(6)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联