• 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于机器学习的煤岩破裂诱发电磁辐射信号智能辨识研究
  • Title

    Intelligent identification of electromagnetic radiation signals induced by coal rock fractures using machine learning

  • 作者

    李保林冯嘉琪王恩元孙新宇王硕玮

  • Author

    LI Baolin;FENG Jiaqi;WANG Enyuan;SUN Xinyu;WANG Shuowei

  • 单位

    中北大学环境与安全工程学院中国矿业大学安全工程学院

  • Organization
    School of Environment and Safety Engineering, North University of China
    School of Safety Engineering, China University of Mining and Technology
  • 摘要
    电磁辐射作为一种有效监测技术已应用于冲击地压、煤与瓦斯突出等煤岩动力灾害监测预警,但因电磁信号产生机制复杂,易受井下环境干扰(干扰信号)而影响灾害危险监测预警准确性。准确辨识煤岩破裂诱发的电磁辐射信号(有效信号)是该技术应用推广的关键。开展了煤岩单轴压缩电磁辐射监测实验,分析了电磁辐射有效信号和干扰信号时域、频域及分形特征差异性,分别利用线性判别法、支持向量机和集成学习法等机器学习算法建立了电磁辐射有效信号和干扰信号智能辨识模型,并对比分析了不同模型的识别精度。结果表明:分形盒维数、平均频率、计数和峰值频率特征对电磁辐射有效信号和干扰信号区分较明显,单一特征识别准确率均在70%以上;信号特征集和机器学习算法对有效信号和干扰信号识别准确率均有影响,基于全部特征集的集成学习法识别准确率最高,对2类信号的平均识别准确率为94.5%,能够满足电磁辐射监测预警应用需求。
  • Abstract
    Electromagnetic radiation (EMR) has proven to be an effective monitoring technology for coal rock dynamic disasters, including underground rock burst and coal and gas outbursts. However, the intricate generation mechanisms of electromagnetic signal, coupled with interference from underground environments, can compromise the accuracy of disaster monitoring and early warning systems. Accurately identifying EMR signals induced by coal rock fractures (effective signals) is essential for the widespread application of this technology. This study conducted monitoring experiments on electromagnetic radiation during uniaxial compression of coal rock, analyzing the time-domain, frequency-domain, and fractal characteristics of both valid and interference signals. Machine learning algorithms, such as linear discriminant analysis, support vector machines, and ensemble learning methods, were utilized to develop intelligent identification models for effective and interference signals. A comparative analysis of the recognition accuracy across different models was performed. The results demonstrated that characteristics like fractal box dimension, average frequency, count, and peak frequency effectively distinguished between valid and interference signals, with single-feature recognition accuracy surpassing 70%. Both the feature set and the choice of machine learning algorithm significantly influenced the identification accuracy of valid and interference signals. The ensemble learning method, leveraging the complete feature set, achieved the highest identification accuracy of 94.5% for both signal types, fulfilling the requirements for EMR monitoring and early warning applications.
  • 关键词

    煤岩动力灾害电磁辐射机器学习煤岩破裂有效信号智能辨识

  • KeyWords

    coal rock dynamic disasters;electromagnetic radiation;machine learning;coal rock fracture;effective signals;intelligent identification

  • 基金项目(Foundation)
    国家自然科学基金项目(5230042436);国家资助博士后研究人员计划项目(GZC20241583);山西省基础研究计划项目(202203021222031,202203021222043)。
  • DOI
  • 引用格式
    李保林,冯嘉琪,王恩元,等. 基于机器学习的煤岩破裂诱发电磁辐射信号智能辨识研究[J]. 工矿自动化,2024,50(9):144-152.
  • Citation
    LI Baolin, FENG Jiaqi, WANG Enyuan, et al. Intelligent identification of electromagnetic radiation signals induced by coal rock fractures using machine learning[J]. Journal of Mine Automation,2024,50(9):144-152.
  • 相关文章
  • 图表
    •  
    •  
    • 煤岩加载电磁辐射监测实验系统

    图(10) / 表(1)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联