• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
深部开采底板厚隔水层突水危险性评价方法研究
  • Title

    Study on risk assessment method of water inrush from thick floor aquifuge in deep mining

  • 作者

    尹尚先徐维尹慧超曹敏

  • Author

    YIN Shangxian,XU Wei,YIN Huichao,CAO Min

  • 单位

    华北科技学院 河北省矿井灾害防治重点实验室防灾科技学院 信息工程学院中国矿业大学(北京) 能源与矿业学院

  • Organization
    1.Hebei State Key Laboratory of Mine Disaster Prevention,North China Institute of Science and Technology,Beijing ,China; 2.School of Information Engineering,Institute of Disaster Prevention,Beijing ,China;3.School of Energy and Mining Engineering, China University of Mining and Technology-Beijing,Beijing ,China
  • 摘要

    突水系数对于深部开采底板厚隔水层突水危险性评价并不完全适用,为了解决深部带压开采底板厚隔水层突水危险性评价问题,据矿井条件建立底板突水主控指标体系,利用区间灰色最优聚类理论,借助GIS强大的空间信息管理和分析功能完成模型的建立、计算以及结果展示;结合层次分析法AHP依据主控因素对突水危险性贡献程度确定其权重系数,采用K-Means聚类算法根据数据分布特征和专家知识及经验划分不同危险性类别所对应区间值,解决了主控因素的复杂性和不确定性问题;按照隶属度的概念改进了经典白化权函数,定义了每个类别的白化权函数不只是与相邻的上、下两个区间存在着关系,而与每个区间的标准值均有关,利用白化权函数将离散的灰数映射到区间灰数上,解决了主控因素物理意义、量纲、量级巨大差异所导致的结果失真问题。以各主控因素在危险性等级下隶属度均为1的确定性判断作为系统特征行为序列,计算评价对象与每个危险性类别的邓氏灰色关联度,形成关联度矩阵。再通过以评价对象与各危险性类别的差异程度为权的加权广义距离描述评价对象与h类别的接近程度,最终建立最优模型。研究结果表明:以邢东矿为例,根据勘探资料和历次突水调查结论,选取了6个主控因素,用AHP确定了权重系数,用K-Means聚类算法确定了安全、较安全、较危险和危险4个等级区间值;再使用灰色最优聚类理论得到了底板突水危险性评价分区图;最终,得到了各危险性等级的分布情况和面积大小等数据,运算结果显示历次突水事故发生的位置都位于危险区域。对比突水系数法的评价结果,由于采用信息量更大,用隶属度关系减弱了临界值的绝对控制作用,使结果更加系统全面,同时克服了基于薄板理论的突水系数法只适用于底板隔水层厚度小于50 m 的局限,是深部带压开采底板厚隔水层突水危险性评价有效方法。

  • Abstract
    The water bursting coefficient is not fully applicable to the evaluation of water inrush risk in thick seams in deep mining.In order to solve the problem of water inrush risk assessment of thick water-bearing floor in deep mining above aquifer,the master indicator system of floor water inrush is established according to mine conditions.Based on the interval gray optimal clustering theory,powerful spatial information management and analysis function of GIS are used to complete model creation,calculation,and results display.The weight coefficient of AHP is determined according to the degree of contribution of the main control factors to the risk of water inrush.The K-Means clustering algorithm divides the interval values of different risk categories according to the data distribution characteristics and expert knowledge and experience,which solves the complexity and uncertainty of the main control factors.According to the concept of membership degree,the classical whitenization weight function is improved.The definition of the whitenization weight function of each category is not only related to the adjacent upper and lower intervals,but is related to the standard value of each interval.The whitenization weight function maps the discrete gray numbers to the interval gray numbers,which solves the problem of result distortion caused by the great difference of the physical meaning,dimension and magnitude of the main control factors.The deterministic judgment of the membership degree under the h risk level is 1 as the system characteristic behavior sequence,and the Deng’s gray correlation degree between the evaluation object and each risk category is calculated to form the relevance degree matrix.The weighted generalized distance with the degree of difference between the evaluation object and each risk category is used to describe the proximity of the evaluation object to the h category,and finally the optimal model is established.Taking Xingdong Mine as an example,based on the exploration data and the results of previous water inrush investigations,six main control factors were selected,the weight coefficient was determined by AHP,and the K-Means clustering algorithm was used to determine four level interval values of safe,safe,danger and danger.The partition map of the risk of floor water inrush is obtained by using the grey optimal clustering theory.In the end,data such as the distribution of the various hazard levels and the size of the area were obtained.The results show that the locations where the water inrush accidents occurred are located in the danger zone.Compared with the evaluation results of the water bursting coefficient method,due to the larger amount of information,the absolute control effect of the critical value is weakened by the membership relationship,which makes the result more comprehensive.At the same time,the water bursting coefficient method based on thin plate theory is broken only for the bottom plate,which is less than 50 m.A method for evaluating the water inrush risk of the thick water-storing layer in deep mining above aquifer is formed.
  • 关键词

    灰色聚类 白化权函数 灰色关联度 主控因素 GIS 突水危险性

  • KeyWords

    grey clustering;whitenization weight function;degree grey incidence;main controlling factors;GIS;risk of water inrush

  • 基金项目(Foundation)
    国家重点基础研究发展计划资助项目
  • 相关专题
  • 图表
    •  
    •  
    • 底板突水主控指标体系

    图(3) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联