为了提高矿井瓦斯浓度预测的准确性,提出1种改进混沌粒子群算法的多变量自适应加权最小二乘支持向量机(AWLSSVM)瓦斯预测模型,且实现了瓦斯浓度的多步预测。首先,对粒子群算法进行分析,提出1种收敛速度更快、全局搜索能力更强的改进混沌粒子群算法;针对加权最小二乘支持向量机(AWLSSVM)权值线性分布的缺点,根据离散点的分布特征,提出了AWLSSVM;其次,采用混沌理论构建模型的样本集;最后,对建立的模型进行了实例分析。结果表明:AWLSSVM单变量预测精度相对于最小二乘支持向量机、AWLSSVM分别提高了5.3%和6.7%;多变量AWLSSVM相对于单变量AWLSSVM五步预测精度分别提高了39.3%、49.6%、55.9%、59.7%、62.5%。
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会