为解决现有机器视觉煤、矸石识别算法感受野小、特征提取能力低和训练收敛速度慢的问题,提出一种嵌入空洞卷积和批归一化模块的智能煤矸识别算法。该算法利用空洞卷积替换VGGNet16网络中尺寸为3×3的卷积核,增大卷积核感受野、提高网络的特征提取能力,同时在卷积层和激活层之间嵌入批归一化模块,在避免梯度消失的同时可加快模型训练收敛速度。利用搭建的实验装置采集煤和矸石图片,制作煤和矸石图像数据集,对模型进行训练,并基于浮点运算次数FLOPs和F1分数对模型的训练结果和预测效果进行评价。实验结果表明,改进后的煤矸识别算法FLOPs为71 632 538次,测试集F1分数为0.994 3,训练在第5个周期即收敛且准确率达到97%以上。通过与其他网络模型训练结果进行对比,说明所建模型具有较快的收敛速度且预测效果较好。
1 研究方法
1.1 卷积神经网络
1.2 空洞卷积
1.3 批归一化模块
2 网络优化
3 实验过程
3.1 煤和矸石数据集
3.2 实验设置
3.3 实验结果对比
4 结论
主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会