• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于LLE和SVM的地震断层自动识别方法
  • Title

    Automatic identification method of seismic fault based on LLE and SVM

  • 作者

    邹冠贵丁建宇任珂殷裁云董青山

  • Author

    ZOU Guangui;DING Jianyu;REN Ke;YIN Caiyun;DONG Qingshan

  • 单位

    中国矿业大学(北京) 地球科学与测绘工程学院中国矿业大学(北京) 煤炭资源与安全开采国家重点实验室华能煤炭技术研究有限公司

  • Organization
    College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing
    State Key Laboratoryof Coal Resource and Safety Mining, China University of Mining and Technology-Beijing
    Huaneng Coal Technology ResearchCo., Ltd.
  • 摘要

    传统地震资料的断层解释主要依靠解释者的知识和经验,存在工作量大、效率低的问题。基于机器学习的断层识别方法,可以融合已有的地质资料、解释人员的知识和经验,构建高质量的数据集,增加解释的准确率。为了提高机器学习方法断层解释的准确率,构建基于局部线性嵌入(LLE) 和支持向量机(SVM) 算法的断层识别方法。首先,介绍了LLE 和SVM 算法的基本原理,说明各算法的计算过程和主要参数;然后建立断层正演模型,分析不同属性的断层响应特征,针对训练数据集中多种地震属性之间的信息冗余,分别通过LLE 和主成分分析(PCA)2 种算法对地震属性数据进行降维,引入的量化指标计算结果表明LLE 算法对于非线性数据体有较好的降维效果;利用西上庄井田6 条巷道、5 口钻井揭露的11 854 个已知构造信息的数据点,分别训练SVM,PCA-SVM 和LLE-SVM 断层识别模型;以准确率A、查全率R、查准率P、F 作为模型的衡量标准,对比各模型在工区数据上的预测分类性能;其中,LLE-SVM 模型综合表现最佳,查准率可达94.4%,远高于其他模型;最后,利用构建的各模型对整个工区进行预测,并结合实际揭露情况和人机交互解释结果进行分析。综合结果表明,基于LLE 和SVM 的断层识别方法在去除冗余信息的同时能够有效突出断层响应特征,减少主观人为因素的影响,提高断层解释的效率。

  • Abstract
    The fault interpretation of traditional seismic data mainly relies on the knowledge and experience of the interpreter,which has the problems of heavy workload and low efficiency. In order to construct high-quality data sets and increasethe accuracy of interpretation, machine learning can integrate the existing geological data, the knowledge and experienceof the interpreter. A fault recognition method based on Local Linear Embedding (LLE) and Support Vector Machine(SVM) algorithms is constructed to improve the accuracy of fault interpretation by machine learning methods. First,the basic principles of LLE and SVM algorithms are introduced to illustrate the calculation process and main parameters ofalgorithms. Then a fault forward modeling model is established to analyze the fault response characteristics of different attributes. Aiming at the information redundancy among various seismic attributes in the training data set, the seismic attributedata are dimensionally reduced by LLE and principal component analysis (PCA). The intersection diagram shows thatthe LLE algorithm has a better dimensionality reduction effect for nonlinear data volumes. The SVM, PCA-SVM and LLESVMrecognition models of fault were trained by using 11854 known structural information data points revealed by sixroadways and five drilled wells in the Xishangzhuang Coalfield. Accuracy rate A, recall rate R, precision rate P and Fvalue were used as the measurement standards to compare the prediction and classification performance of each model inthe research area. Among them, the LLE-SVM model has the best overall performance, with a precision rate of 94.4%,much higher than those of other models. Finally, the whole research area is predicted by using the models, and analyzed bycombining the actual disclosure and artificial interpretation results. The comprehensive results show that the fault identificationmethod based on LLE and SVM can effectively highlight the fault response characteristics while removing redundantinformation, reduce the influence of subjective factors, and improve the efficiency of fault interpretation.
  • 关键词

    断层识别地震属性优化煤田三维地震局部线性嵌入支持向量机

  • KeyWords

    fault identification; seismic attributes optimization; 3D coalfield seismic; locally linear embedding; support vector machine

  • 基金项目(Foundation)
    国家重点研发计划资助项目(2018YFC0807803)
  • DOI
  • 引用格式
    邹冠贵,丁建宇,任珂,等. 基于LLE和SVM的地震断层自动识别方法[J]. 煤炭学报,2023,48(4):1634−1644
  • Citation
    ZOU Guangui,DING Jianyu,REN Ke,et al. Automatic identification method of seismic fault based on LLE and SVM[J]. Journal of China Coal Society,2023,48(4):1634−1644
  • 相关文章
  • 图表
    •  
    •  
    • 正演模型

    图(9) / 表(0)

相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联