• 访客 您好
  •  | 
  • 注册
  • 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于UeDiff−GAN的综采工作面目标检测与孪生体同步映射
  • Title

    UeDiff-GAN-based target detection and twin synchronization mapping for fully mechanized mining faces

  • 作者

    张帆于洋戚振明李海军王春丽杜潇王柄印张光磊宋惠席宸荣

  • Author

    ZHANG Fan;YU Yang;QI Zhenming;LI Haijun;WANG Chunli;DU Xiao;WANG Bingyin;ZHANG Guanglei;SONG Hui;XI Chenrong

  • 单位

    中国矿业大学(北京) 人工智能学院国能准能集团有限责任公司中煤能源研究院有限责任公司

  • Organization
    School of Artificial Intelligence, China University of Mining and Technology-Beijing
    CHN Energy Zhunneng Group Co., Ltd.
    China Coal Energy Research Institute Co., Ltd.
  • 摘要

    矿井综采工作面数字孪生模型的构建过程需要手动构建实体的数字孪生3D模型,然后对实体进行目标检测,并根据实时检测结果控制3D模型,以确保孪生体与实体之间的同步映射关系。因此,对井下目标的实时、准确检测是实现虚实同步映射控制的关键。目前主流的目标检测方法需要在传统模型中引入或改进模块,使得模型网络结构复杂、训练周期较长,降低了目标检测的实时性;同时,对于一些含高强度噪声的图像难以精确检测。针对上述问题,提出了一种基于UeDiff−GAN的综采工作面目标检测与孪生体同步映射方法。通过扩散模型对高质量样本进行加噪扩散,得到不同程度的加噪样本,然后使用生成对抗网络(GAN)模型进行训练;设计了平滑扩散算法,以控制扩散步长,加入不均衡扩散模块,以得到与预识别样本匹配的检测算法模型。使用Unity3D构建综采工作面3D模型并进行渲染,实现井下物理实体的对象孪生,据此构建综采工作面实体与其孪生模型的映射关系,根据井下不同位置的检测结果控制对应机器运动状态及姿态,实现孪生模型协同控制,从而实现过程孪生。在自制数据集上的实验结果表明:UeDiff−GAN模型对井下移动目标的平均检测精度较SSD,R−CNN,YOLOv7和Diff−GAN模型分别提升了19.4%,14.3%,9.1%,24.3%;检测速度较SSD,R−CNN分别提升了13.86,42.73 帧/s;孪生模型与实体的实时性延迟至多为0.873 s。

  • Abstract

    The construction of a digital twin model for fully mechanized mining faces requires manually creating a digital twin 3D model of a physical entity, performing target detection on the entity, and adjusting the 3D model based on real-time detection results to ensure synchronization mapping between the twin and the physical entity. Therefore, real-time and accurate detection of underground targets is crucial for achieving virtual-physical synchronization mapping control. Current mainstream target detection methods require incorporating or modifying modules within traditional models, resulting in complex network structures and prolonged training cycles, which reduce the real-time performance of target detection. Moreover, these methods struggle with precisely detecting targets in images with high-intensity noise. To address these issues, this study proposed a UeDiff-GAN-based target detection and twin synchronization mapping method for fully mechanized mining faces. The diffusion model was used to add noise into high-quality samples to generate samples of varying levels, which were then used to train a generative adversarial network (GAN) model. A smooth diffusion algorithm was designed to regulate the diffusion step sizes, while an imbalanced diffusion module was incorporated to obtain a detection algorithm model that matches pre-identified samples. A 3D model of the fully mechanized mining face was constructed and rendered using Unity3D, achieving a digital twin of underground physical entities. Based on this model, a mapping relationship between the physical entity and its twin model was established. The corresponding machine's motion state and posture are controlled according to the detection results at different underground locations. This approach enabled twin model coordinated control, thereby achieving process-level twinning. Experimental results on a self-developed dataset demonstrated that the UeDiff-GAN model improved the average detection accuracy of underground moving targets by 19.4%, 14.3%, 9.1%, and 24.3% compared to SSD, R-CNN, YOLOv7, and Diff-GAN models, respectively. The detection speed improved by 13.86, 42.73 frames per second (fps) compared to SSD and R-CNN models, respectively. The real-time delay between the twin model and the physical entity was at a maximum of 0.873 seconds.

  • 关键词

    综采工作面数字孪生目标检测虚实同步映射扩散模型生成对抗网络

  • KeyWords

    fully mechanized mining face;digital twin;target detection;virtual-physical synchronization mapping;diffusion model;GAN

  • 基金项目(Foundation)
    国家自然科学基金面上项目(52374165);国家重点研发计划项目(2022YFC3004600);国能集团科技创新项目(2024207010727)。
  • DOI
  • 引用格式
    张帆,于洋,戚振明,等. 基于UeDiff−GAN的综采工作面目标检测与孪生体同步映射[J]. 工矿自动化,2025,51(3):9-15, 21.
  • Citation
    ZHANG Fan, YU Yang, QI Zhenming, et al. UeDiff-GAN-based target detection and twin synchronization mapping for fully mechanized mining faces[J]. Journal of Mine Automation,2025,51(3):9-15, 21.
  • 相关文章
  • 相关专题
  • 图表
    •  
    •  
    • UeDiff−GAN模型框架

    图(6) / 表(2)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
累计访问量:27677632,今日访问人数:11801 站长统计