• 访客 您好
  •  | 
  • 注册
  • 全部
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于割煤循环智能检测的工作面来压判识方法
  • Title

    Face pressure identification method based on intelligent detection of coal cutting cycles

  • 作者

    罗香玉康林星南添松解盘石伍永平

  • Author

    LUO Xiangyu;KANG Linxing;NAN Tiansong;XIE Panshi;WU Yongping

  • 单位

    西安科技大学 人工智能与计算机学院西安科技大学 西部矿井开采及灾害防治教育部重点实验室西安科技大学 能源学院

  • Organization
    College of Artificial Intelligence & Computer Science, Xi'an University of Science and Technology
    Key Laboratory of Western Mine Exploitation and Hazard Prevention Ministry of Education, Xi'an University of Science and Technology
    College of Energy Engineering, Xi'an University of Science and Technology
  • 摘要

    基于液压支架工作阻力数据进行工作面来压判识需解决2个问题:一是如何从海量的工作阻力数据中提取循环末阻力数据,二是如何有效利用提取出的循环末阻力数据对工作面是否来压实现有效判断。现有的循环末阻力提取方法大多依赖固定规则和经验值参数,在复杂工作面环境下准确性低且适应性差。针对该问题,提出一种基于割煤循环智能检测的工作面来压判识方法。将割煤循环检测转化为二分类问题,使用支持向量机分类器对割煤循环结束时刻进行智能检测,以自动判别割煤循环的结束时刻;在获取所有割煤循环结束时刻的基础上,提取各支架循环末阻力数据;通过数据融合生成能够反映工作面整体压力状态的单序列数据,并基于来压判定公式进行工作面来压判识。基于不连沟煤矿某工作面的液压支架工作阻力数据进行实验,结果表明,该方法割煤循环检测的精确率、召回率、F1分数分别为85.91%,81.84%,83.83%,来压判识的精确率、召回率、F1分数分别为79.43%,78.76%,79.09%,均优于滑动窗口极值法和阈值法,在识别循环末阻力和工作面来压判识方面具有显著优势。

  • Abstract

    The method for identifying face pressure based on hydraulic support working resistance data needs to address two issues: first, how to extract the cycle-end resistance data from large volumes of working resistance data, and second, how to effectively utilize the extracted cycle-end resistance data to determine whether face pressure is occurring. Most existing methods for extracting cycle-end resistance rely on fixed rules and empirical parameter values, which have low accuracy and poor adaptability in complex working face environments. To address this issue, an intelligent detection method for face pressure identification based on coal cutting cycles was proposed. Coal cutting cycle detection was transformed into a binary classification problem, using a support vector machine (SVM) classifier to intelligently detect the end time of coal cutting cycles, automatically identifying the end of each coal cutting cycle. After obtaining the end times of all coal cutting cycles, the cycle-end resistance data for each support was extracted. Data fusion was performed to generate a single sequence of data that reflects the overall pressure state of the working face. Face pressure identification was then made based on a pressure judgment formula. Experiments were conducted on hydraulic support working resistance data from a working face in a non-contiguous coal mine. The results showed that the proposed method had precision, recall, and F1 scores of 85.91%, 81.84%, and 83.83%, respectively, for coal cutting cycle detection, and precision, recall, and F1 scores of 79.43%, 78.76%, and 79.09%, respectively, for face pressure identification These results are superior to the sliding window extreme value method and threshold method, demonstrating significant advantages in cycle-end resistance identification and face pressure judgment.

  • 关键词

    顶板灾害防控来压判识割煤循环智能检测支持向量机循环末阻力

  • KeyWords

    roof disaster prevention and control;face pressure identification;coal cutting cycle intelligent detection;support vector machine;cycle-end resistance

  • 基金项目(Foundation)
    陕西省杰出青年科学基金项目(2023-JC-JQ-42);陕西省教育厅青年创新团队科研计划项目(23JP098);陕西省秦创原“科学家+工程师”队伍建设项目(2024QCY-KXJ-033)。
  • DOI
  • 引用格式
    罗香玉,康林星,南添松,等. 基于割煤循环智能检测的工作面来压判识方法[J]. 工矿自动化,2025,51(3):16-21.
  • Citation
    LUO Xiangyu, KANG Linxing, NAN Tiansong, et al. Face pressure identification method based on intelligent detection of coal cutting cycles[J]. Journal of Mine Automation,2025,51(3):16-21.
  • 相关专题
  • 图表
    •  
    •  
    • 压力状态序列对比

    图(1) / 表(2)

相关问题
立即提问

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联
累计访问量:27691528,今日访问人数:25697 站长统计